Sort by

Send to

Choose Destination

Links from PubMed

Items: 20


Mitochondrial retrograde signaling inhibits the survival during prolong S/G2 arrest in Saccharomyces cerevisiae.

Zyrina AN, Sorokin MI, Sokolov SS, Knorre DA, Severin FF.

Oncotarget. 2015 Dec 29;6(42):44084-94. doi: 10.18632/oncotarget.6406.


Programmed cell death in Saccharomyces cerevisiae is hampered by the deletion of GUP1 gene.

Tulha J, Faria-Oliveira F, Lucas C, Ferreira C.

BMC Microbiol. 2012 May 22;12:80. doi: 10.1186/1471-2180-12-80.


Cytolethal distending toxin from Aggregatibacter actinomycetemcomitans induces DNA damage, S/G2 cell cycle arrest, and caspase- independent death in a Saccharomyces cerevisiae model.

Matangkasombut O, Wattanawaraporn R, Tsuruda K, Ohara M, Sugai M, Mongkolsuk S.

Infect Immun. 2010 Feb;78(2):783-92. doi: 10.1128/IAI.00857-09.


TEN1 is essential for CDC13-mediated telomere capping.

Xu L, Petreaca RC, Gasparyan HJ, Vu S, Nugent CI.

Genetics. 2009 Nov;183(3):793-810. doi: 10.1534/genetics.109.108894.


Peroxiredoxin Tsa1 is the key peroxidase suppressing genome instability and protecting against cell death in Saccharomyces cerevisiae.

Iraqui I, Kienda G, Soeur J, Faye G, Baldacci G, Kolodner RD, Huang ME.

PLoS Genet. 2009 Jun;5(6):e1000524. doi: 10.1371/journal.pgen.1000524.


TOR regulates cell death induced by telomere dysfunction in budding yeast.

Qi H, Chen Y, Fu X, Lin CP, Zheng XF, Liu LF.

PLoS One. 2008;3(10):e3520. doi: 10.1371/journal.pone.0003520.


A genome wide analysis of the response to uncapped telomeres in budding yeast reveals a novel role for the NAD+ biosynthetic gene BNA2 in chromosome end protection.

Greenall A, Lei G, Swan DC, James K, Wang L, Peters H, Wipat A, Wilkinson DJ, Lydall D.

Genome Biol. 2008 Oct 1;9(10):R146. doi: 10.1186/gb-2008-9-10-r146.


Global transcriptional analysis of yeast cell death induced by mutation of sister chromatid cohesin.

Ren Q, Yang H, Gao B, Zhang Z.

Comp Funct Genomics. 2008:634283. doi: 10.1155/2008/634283.


Mitochondrial death pathways in yeast and mammalian cells.

Cheng WC, Leach KM, Hardwick JM.

Biochim Biophys Acta. 2008 Jul;1783(7):1272-9. doi: 10.1016/j.bbamcr.2008.04.012. Review.


Targeting human telomeric G-quadruplex DNA with oxazole-containing macrocyclic compounds.

Pilch DS, Barbieri CM, Rzuczek SG, Lavoie EJ, Rice JE.

Biochimie. 2008 Aug;90(8):1233-49. doi: 10.1016/j.biochi.2008.03.011.


Lysinyl macrocyclic hexaoxazoles: synthesis and selective G-quadruplex stabilizing properties.

Rzuczek SG, Pilch DS, LaVoie EJ, Rice JE.

Bioorg Med Chem Lett. 2008 Feb 1;18(3):913-7. doi: 10.1016/j.bmcl.2007.12.048.


Defining the mode, energetics and specificity with which a macrocyclic hexaoxazole binds to human telomeric G-quadruplex DNA.

Barbieri CM, Srinivasan AR, Rzuczek SG, Rice JE, LaVoie EJ, Pilch DS.

Nucleic Acids Res. 2007;35(10):3272-86.


Production of reactive oxygen species in response to replication stress and inappropriate mitosis in fission yeast.

Marchetti MA, Weinberger M, Murakami Y, Burhans WC, Huberman JA.

J Cell Sci. 2006 Jan 1;119(Pt 1):124-31.


Role of mitochondria in the pheromone- and amiodarone-induced programmed death of yeast.

Pozniakovsky AI, Knorre DA, Markova OV, Hyman AA, Skulachev VP, Severin FF.

J Cell Biol. 2005 Jan 17;168(2):257-69.


Biological consequences of oxidative stress-induced DNA damage in Saccharomyces cerevisiae.

Salmon TB, Evert BA, Song B, Doetsch PW.

Nucleic Acids Res. 2004 Jul 14;32(12):3712-23.

Items per page

Supplemental Content

Support Center