Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 33


The β subunit of yeast AMP-activated protein kinase directs substrate specificity in response to alkaline stress.

Chandrashekarappa DG, McCartney RR, O'Donnell AF, Schmidt MC.

Cell Signal. 2016 Dec;28(12):1881-1893. doi: 10.1016/j.cellsig.2016.08.016.


Large-Scale Analysis of Kinase Signaling in Yeast Pseudohyphal Development Identifies Regulation of Ribonucleoprotein Granules.

Shively CA, Kweon HK, Norman KL, Mellacheruvu D, Xu T, Sheidy DT, Dobry CJ, Sabath I, Cosky EE, Tran EJ, Nesvizhskii A, Andrews PC, Kumar A.

PLoS Genet. 2015 Oct 8;11(10):e1005564. doi: 10.1371/journal.pgen.1005564.


Molecular mechanism of flocculation self-recognition in yeast and its role in mating and survival.

Goossens KV, Ielasi FS, Nookaew I, Stals I, Alonso-Sarduy L, Daenen L, Van Mulders SE, Stassen C, van Eijsden RG, Siewers V, Delvaux FR, Kasas S, Nielsen J, Devreese B, Willaert RG.

MBio. 2015 Apr 14;6(2). pii: e00427-15. doi: 10.1128/mBio.00427-15.


Robustness analysis on interspecies interaction network for iron and glucose competition between Candida albicans and zebrafish during infection.

Lin C, Lin CN, Wang YC, Liu FY, Chien YW, Chuang YJ, Lan CY, Hsieh WP, Chen BS.

BMC Syst Biol. 2014;8 Suppl 5:S6. doi: 10.1186/1752-0509-8-S5-S6.


Pooled segregant sequencing reveals genetic determinants of yeast pseudohyphal growth.

Song Q, Johnson C, Wilson TE, Kumar A.

PLoS Genet. 2014 Aug 21;10(8):e1004570. doi: 10.1371/journal.pgen.1004570.


The yeast Sks1p kinase signaling network regulates pseudohyphal growth and glucose response.

Johnson C, Kweon HK, Sheidy D, Shively CA, Mellacheruvu D, Nesvizhskii AI, Andrews PC, Kumar A.

PLoS Genet. 2014 Mar 6;10(3):e1004183. doi: 10.1371/journal.pgen.1004183.


Adaptation of the osmotolerant yeast Zygosaccharomyces rouxii to an osmotic environment through copy number amplification of FLO11D.

Watanabe J, Uehara K, Mogi Y.

Genetics. 2013 Oct;195(2):393-405. doi: 10.1534/genetics.113.154690.


Genetic networks inducing invasive growth in Saccharomyces cerevisiae identified through systematic genome-wide overexpression.

Shively CA, Eckwahl MJ, Dobry CJ, Mellacheruvu D, Nesvizhskii A, Kumar A.

Genetics. 2013 Apr;193(4):1297-310. doi: 10.1534/genetics.112.147876.


Identification of a complex genetic network underlying Saccharomyces cerevisiae colony morphology.

Voordeckers K, De Maeyer D, van der Zande E, Vinces MD, Meert W, Cloots L, Ryan O, Marchal K, Verstrepen KJ.

Mol Microbiol. 2012 Oct;86(1):225-39. doi: 10.1111/j.1365-2958.2012.08192.x.


The mRNA decay pathway regulates the expression of the Flo11 adhesin and biofilm formation in Saccharomyces cerevisiae.

Lo TL, Qu Y, Uwamahoro N, Quenault T, Beilharz TH, Traven A.

Genetics. 2012 Aug;191(4):1387-91. doi: 10.1534/genetics.112.141432.


The regulation of filamentous growth in yeast.

Cullen PJ, Sprague GF Jr.

Genetics. 2012 Jan;190(1):23-49. doi: 10.1534/genetics.111.127456. Review.


Flo11p adhesin required for meiotic differentiation in Saccharomyces cerevisiae minicolonies grown on plastic surfaces.

White MG, Piccirillo S, Dusevich V, Law DJ, Kapros T, Honigberg SM.

FEMS Yeast Res. 2011 Mar;11(2):223-32. doi: 10.1111/j.1567-1364.2010.00712.x.


A profile of differentially abundant proteins at the yeast cell periphery during pseudohyphal growth.

Xu T, Shively CA, Jin R, Eckwahl MJ, Dobry CJ, Song Q, Kumar A.

J Biol Chem. 2010 May 14;285(20):15476-88. doi: 10.1074/jbc.M110.114926.


SNF1/AMPK pathways in yeast.

Hedbacker K, Carlson M.

Front Biosci. 2008 Jan 1;13:2408-20. Review.

Items per page

Supplemental Content

Support Center