Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 186

1.

Methods used to study the oligomeric structure of G-protein-coupled receptors.

Guo H, An S, Ward R, Yang Y, Liu Y, Guo XX, Hao Q, Xu TR.

Biosci Rep. 2017 Apr 20;37(2). pii: BSR20160547. doi: 10.1042/BSR20160547. Print 2017 Apr 30. Review.

2.

A G Protein-Coupled Receptor Dimerization Interface in Human Cone Opsins.

Jastrzebska B, Comar WD, Kaliszewski MJ, Skinner KC, Torcasio MH, Esway AS, Jin H, Palczewski K, Smith AW.

Biochemistry. 2017 Jan 10;56(1):61-72. doi: 10.1021/acs.biochem.6b00877. Epub 2016 Nov 29.

3.

Structural assemblies of the di- and oligomeric G-protein coupled receptor TGR5 in live cells: an MFIS-FRET and integrative modelling study.

Greife A, Felekyan S, Ma Q, Gertzen CG, Spomer L, Dimura M, Peulen TO, Wöhler C, Häussinger D, Gohlke H, Keitel V, Seidel CA.

Sci Rep. 2016 Nov 11;6:36792. doi: 10.1038/srep36792.

4.

Membrane-Mediated Oligomerization of G Protein Coupled Receptors and Its Implications for GPCR Function.

Gahbauer S, Böckmann RA.

Front Physiol. 2016 Oct 25;7:494. eCollection 2016. Review.

5.

Exploration of bivalent ligands targeting putative mu opioid receptor and chemokine receptor CCR5 dimerization.

Arnatt CK, Falls BA, Yuan Y, Raborg TJ, Masvekar RR, El-Hage N, Selley DE, Nicola AV, Knapp PE, Hauser KF, Zhang Y.

Bioorg Med Chem. 2016 Nov 15;24(22):5969-5987. doi: 10.1016/j.bmc.2016.09.059. Epub 2016 Sep 26.

6.

Dimerization deficiency of enigmatic retinitis pigmentosa-linked rhodopsin mutants.

Ploier B, Caro LN, Morizumi T, Pandey K, Pearring JN, Goren MA, Finnemann SC, Graumann J, Arshavsky VY, Dittman JS, Ernst OP, Menon AK.

Nat Commun. 2016 Oct 3;7:12832. doi: 10.1038/ncomms12832.

7.

Quaternary structures of opsin in live cells revealed by FRET spectrometry.

Mishra AK, Gragg M, Stoneman MR, Biener G, Oliver JA, Miszta P, Filipek S, Raicu V, Park PS.

Biochem J. 2016 Nov 1;473(21):3819-3836. Epub 2016 Sep 13.

PMID:
27623775
8.

Dimerization of visual pigments in vivo.

Zhang T, Cao LH, Kumar S, Enemchukwu NO, Zhang N, Lambert A, Zhao X, Jones A, Wang S, Dennis EM, Fnu A, Ham S, Rainier J, Yau KW, Fu Y.

Proc Natl Acad Sci U S A. 2016 Aug 9;113(32):9093-8. doi: 10.1073/pnas.1609018113. Epub 2016 Jul 26.

9.

Molecular basis for photoreceptor outer segment architecture.

Goldberg AF, Moritz OL, Williams DS.

Prog Retin Eye Res. 2016 Nov;55:52-81. doi: 10.1016/j.preteyeres.2016.05.003. Epub 2016 Jun 1. Review.

PMID:
27260426
10.

The Molecular Architecture of Cell Adhesion: Dynamic Remodeling Revealed by Videonanoscopy.

Sergé A.

Front Cell Dev Biol. 2016 May 4;4:36. doi: 10.3389/fcell.2016.00036. eCollection 2016. Review.

11.

Evaluating the Raftophilicity of Rhodopsin Photoreceptor in a Patterned Model Membrane.

Tanimoto Y, Okada K, Hayashi F, Morigaki K.

Biophys J. 2015 Dec 1;109(11):2307-16. doi: 10.1016/j.bpj.2015.10.015.

12.

Protein and Signaling Networks in Vertebrate Photoreceptor Cells.

Koch KW, Dell'Orco D.

Front Mol Neurosci. 2015 Nov 17;8:67. doi: 10.3389/fnmol.2015.00067. eCollection 2015. Review.

13.

Photoreceptors at a glance.

Molday RS, Moritz OL.

J Cell Sci. 2015 Nov 15;128(22):4039-45. doi: 10.1242/jcs.175687. Review.

14.

Rhodopsin Forms Nanodomains in Rod Outer Segment Disc Membranes of the Cold-Blooded Xenopus laevis.

Rakshit T, Senapati S, Sinha S, Whited AM, Park PS.

PLoS One. 2015 Oct 22;10(10):e0141114. doi: 10.1371/journal.pone.0141114. eCollection 2015.

15.

Disruption of Rhodopsin Dimerization with Synthetic Peptides Targeting an Interaction Interface.

Jastrzebska B, Chen Y, Orban T, Jin H, Hofmann L, Palczewski K.

J Biol Chem. 2015 Oct 16;290(42):25728-44. doi: 10.1074/jbc.M115.662684. Epub 2015 Sep 1.

16.

Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser.

Kang Y, Zhou XE, Gao X, He Y, Liu W, Ishchenko A, Barty A, White TA, Yefanov O, Han GW, Xu Q, de Waal PW, Ke J, Tan MH, Zhang C, Moeller A, West GM, Pascal BD, Van Eps N, Caro LN, Vishnivetskiy SA, Lee RJ, Suino-Powell KM, Gu X, Pal K, Ma J, Zhi X, Boutet S, Williams GJ, Messerschmidt M, Gati C, Zatsepin NA, Wang D, James D, Basu S, Roy-Chowdhury S, Conrad CE, Coe J, Liu H, Lisova S, Kupitz C, Grotjohann I, Fromme R, Jiang Y, Tan M, Yang H, Li J, Wang M, Zheng Z, Li D, Howe N, Zhao Y, Standfuss J, Diederichs K, Dong Y, Potter CS, Carragher B, Caffrey M, Jiang H, Chapman HN, Spence JC, Fromme P, Weierstall U, Ernst OP, Katritch V, Gurevich VV, Griffin PR, Hubbell WL, Stevens RC, Cherezov V, Melcher K, Xu HE.

Nature. 2015 Jul 30;523(7562):561-7. doi: 10.1038/nature14656. Epub 2015 Jul 22.

17.

Preferred supramolecular organization and dimer interfaces of opioid receptors from simulated self-association.

Provasi D, Boz MB, Johnston JM, Filizola M.

PLoS Comput Biol. 2015 Mar 30;11(3):e1004148. doi: 10.1371/journal.pcbi.1004148. eCollection 2015 Mar.

18.

Rhodopsin/lipid hydrophobic matching-rhodopsin oligomerization and function.

Soubias O, Teague WE Jr, Hines KG, Gawrisch K.

Biophys J. 2015 Mar 10;108(5):1125-32. doi: 10.1016/j.bpj.2015.01.006.

19.

Simulation tools for particle-based reaction-diffusion dynamics in continuous space.

Schöneberg J, Ullrich A, Noé F.

BMC Biophys. 2014 Oct 24;7:11. doi: 10.1186/s13628-014-0011-5. eCollection 2014. Review.

20.

The G protein-coupled receptor rhodopsin: a historical perspective.

Hofmann L, Palczewski K.

Methods Mol Biol. 2015;1271:3-18. doi: 10.1007/978-1-4939-2330-4_1.

Supplemental Content

Support Center