Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 21

1.

Protein Discovery: Combined Transcriptomic and Proteomic Analyses of Venom from the Endoparasitoid Cotesia chilonis (Hymenoptera: Braconidae).

Teng ZW, Xiong SJ, Xu G, Gan SY, Chen X, Stanley D, Yan ZC, Ye GY, Fang Q.

Toxins (Basel). 2017 Apr 12;9(4). pii: E135. doi: 10.3390/toxins9040135.

2.

An activated form of ADAM10 is tumor selective and regulates cancer stem-like cells and tumor growth.

Atapattu L, Saha N, Chheang C, Eissman MF, Xu K, Vail ME, Hii L, Llerena C, Liu Z, Horvay K, Abud HE, Kusebauch U, Moritz RL, Ding BS, Cao Z, Rafii S, Ernst M, Scott AM, Nikolov DB, Lackmann M, Janes PW.

J Exp Med. 2016 Aug 22;213(9):1741-57. doi: 10.1084/jem.20151095. Epub 2016 Aug 8.

3.

ADAM and ADAMTS Family Proteins and Snake Venom Metalloproteinases: A Structural Overview.

Takeda S.

Toxins (Basel). 2016 May 17;8(5). pii: E155. doi: 10.3390/toxins8050155. Review.

4.

The Wnt receptor Frizzled-4 modulates ADAM13 metalloprotease activity.

Abbruzzese G, Gorny AK, Kaufmann LT, Cousin H, Kleino I, Steinbeisser H, Alfandari D.

J Cell Sci. 2015 Mar 15;128(6):1139-49. doi: 10.1242/jcs.163063. Epub 2015 Jan 22.

5.

The role of proteases in regulating Eph/ephrin signaling.

Atapattu L, Lackmann M, Janes PW.

Cell Adh Migr. 2014;8(4):294-307. doi: 10.4161/19336918.2014.970026. Review.

6.

Regulation of receptor tyrosine kinase ligand processing.

Adrain C, Freeman M.

Cold Spring Harb Perspect Biol. 2014 Jan 1;6(1). pii: a008995. doi: 10.1101/cshperspect.a008995.

7.

Cadherin-6B is proteolytically processed during epithelial-to-mesenchymal transitions of the cranial neural crest.

Schiffmacher AT, Padmanabhan R, Jhingory S, Taneyhill LA.

Mol Biol Cell. 2014 Jan;25(1):41-54. doi: 10.1091/mbc.E13-08-0459. Epub 2013 Nov 6.

8.

The venom-gland transcriptome of the eastern coral snake (Micrurus fulvius) reveals high venom complexity in the intragenomic evolution of venoms.

Margres MJ, Aronow K, Loyacano J, Rokyta DR.

BMC Genomics. 2013 Aug 2;14:531. doi: 10.1186/1471-2164-14-531.

9.

Strain-induced differentiation of fetal type II epithelial cells is mediated via the integrin α6β1-ADAM17/tumor necrosis factor-α-converting enzyme (TACE) signaling pathway.

Wang Y, Huang Z, Nayak PS, Matthews BD, Warburton D, Shi W, Sanchez-Esteban J.

J Biol Chem. 2013 Aug 30;288(35):25646-57. doi: 10.1074/jbc.M113.473777. Epub 2013 Jul 25.

10.

Antibodies binding the ADAM10 substrate recognition domain inhibit Eph function.

Atapattu L, Saha N, Llerena C, Vail ME, Scott AM, Nikolov DB, Lackmann M, Janes PW.

J Cell Sci. 2012 Dec 15;125(Pt 24):6084-93. doi: 10.1242/jcs.112631. Epub 2012 Oct 29.

11.

Epithelial to mesenchymal transition: new and old insights from the classical neural crest model.

Strobl-Mazzulla PH, Bronner ME.

Semin Cancer Biol. 2012 Oct;22(5-6):411-6. doi: 10.1016/j.semcancer.2012.04.008. Epub 2012 Apr 30. Review.

12.

ADAM-15 disintegrin-like domain structure and function.

Lu D, Scully M, Kakkar V, Lu X.

Toxins (Basel). 2010 Oct;2(10):2411-27. doi: 10.3390/toxins2102411. Epub 2010 Oct 19. Review.

13.

Mapping of the disease locus and identification of ADAMTS10 as a candidate gene in a canine model of primary open angle glaucoma.

Kuchtey J, Olson LM, Rinkoski T, Mackay EO, Iverson TM, Gelatt KN, Haines JL, Kuchtey RW.

PLoS Genet. 2011 Feb;7(2):e1001306. doi: 10.1371/journal.pgen.1001306. Epub 2011 Feb 17.

14.

Conservation and divergence of ADAM family proteins in the Xenopus genome.

Wei S, Whittaker CA, Xu G, Bridges LC, Shah A, White JM, Desimone DW.

BMC Evol Biol. 2010 Jul 14;10:211. doi: 10.1186/1471-2148-10-211.

15.

ADAM-17: the enzyme that does it all.

Gooz M.

Crit Rev Biochem Mol Biol. 2010 Apr;45(2):146-69. doi: 10.3109/10409231003628015. Review.

16.

Evolutionary divergence and functions of the ADAM and ADAMTS gene families.

Brocker CN, Vasiliou V, Nebert DW.

Hum Genomics. 2009 Oct;4(1):43-55.

17.

Regulation of mature ADAM17 by redox agents for L-selectin shedding.

Wang Y, Herrera AH, Li Y, Belani KK, Walcheck B.

J Immunol. 2009 Feb 15;182(4):2449-57. doi: 10.4049/jimmunol.0802770.

18.

Extracellular cleavage of cadherin-11 by ADAM metalloproteases is essential for Xenopus cranial neural crest cell migration.

McCusker C, Cousin H, Neuner R, Alfandari D.

Mol Biol Cell. 2009 Jan;20(1):78-89. doi: 10.1091/mbc.E08-05-0535. Epub 2008 Oct 22. Erratum in: Mol Biol Cell. 2010 May;21(9):1643.

19.

Molecular analysis of neural crest migration.

Kuriyama S, Mayor R.

Philos Trans R Soc Lond B Biol Sci. 2008 Apr 12;363(1495):1349-62. doi: 10.1098/rstb.2007.2252. Review.

20.

Crystal structures of VAP1 reveal ADAMs' MDC domain architecture and its unique C-shaped scaffold.

Takeda S, Igarashi T, Mori H, Araki S.

EMBO J. 2006 Jun 7;25(11):2388-96. Epub 2006 May 11.

Supplemental Content

Support Center