Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 28

1.

Recent Advances in the Rational Design and Optimization of Antibacterial Agents.

Jones JA, Virga KG, Gumina G, Hevener KE.

Medchemcomm. 2016 Sep 1;7(9):1694-1715. Epub 2016 Jul 7.

PMID:
27642504
2.

Transcriptional Repression of the VC2105 Protein by Vibrio FadR Suggests that It Is a New Auxiliary Member of the fad Regulon.

Gao R, Lin J, Zhang H, Feng Y.

Appl Environ Microbiol. 2016 Apr 18;82(9):2819-32. doi: 10.1128/AEM.00293-16. Print 2016 May.

3.

Ralstonia solanacearum fatty acid composition is determined by interaction of two 3-ketoacyl-acyl carrier protein reductases encoded on separate replicons.

Feng SX, Ma JC, Yang J, Hu Z, Zhu L, Bi HK, Sun YR, Wang HH.

BMC Microbiol. 2015 Oct 22;15:223. doi: 10.1186/s12866-015-0554-x.

4.

Ralstonia solanacearum RSp0194 Encodes a Novel 3-Keto-Acyl Carrier Protein Synthase III.

Mao YH, Ma JC, Li F, Hu Z, Wang HH.

PLoS One. 2015 Aug 25;10(8):e0136261. doi: 10.1371/journal.pone.0136261. eCollection 2015.

5.

Role of fatty acids in Bacillus environmental adaptation.

Diomandé SE, Nguyen-The C, Guinebretière MH, Broussolle V, Brillard J.

Front Microbiol. 2015 Aug 5;6:813. doi: 10.3389/fmicb.2015.00813. eCollection 2015. Review.

6.

Metabolic Regulation of a Bacterial Cell System with Emphasis on Escherichia coli Metabolism.

Shimizu K.

ISRN Biochem. 2013 Feb 18;2013:645983. doi: 10.1155/2013/645983. eCollection 2013. Review.

7.

Using modern tools to probe the structure-function relationship of fatty acid synthases.

Finzel K, Lee DJ, Burkart MD.

Chembiochem. 2015 Mar 2;16(4):528-47. doi: 10.1002/cbic.201402578. Epub 2015 Feb 10. Review.

8.

Fatty acid biosynthesis revisited: structure elucidation and metabolic engineering.

Beld J, Lee DJ, Burkart MD.

Mol Biosyst. 2015 Jan;11(1):38-59. doi: 10.1039/c4mb00443d. Epub 2014 Oct 31. Review.

9.

Production of free monounsaturated fatty acids by metabolically engineered Escherichia coli.

Cao Y, Liu W, Xu X, Zhang H, Wang J, Xian M.

Biotechnol Biofuels. 2014 Apr 10;7:59. doi: 10.1186/1754-6834-7-59. eCollection 2014.

10.

A novel role for an ECF sigma factor in fatty acid biosynthesis and membrane fluidity in Pseudomonas aeruginosa.

Boechat AL, Kaihami GH, Politi MJ, Lépine F, Baldini RL.

PLoS One. 2013 Dec 30;8(12):e84775. doi: 10.1371/journal.pone.0084775. eCollection 2013.

11.

Type II fatty acid biosynthesis is essential for Plasmodium falciparum sporozoite development in the midgut of Anopheles mosquitoes.

van Schaijk BC, Kumar TR, Vos MW, Richman A, van Gemert GJ, Li T, Eappen AG, Williamson KC, Morahan BJ, Fishbaugher M, Kennedy M, Camargo N, Khan SM, Janse CJ, Sim KL, Hoffman SL, Kappe SH, Sauerwein RW, Fidock DA, Vaughan AM.

Eukaryot Cell. 2014 May;13(5):550-9. doi: 10.1128/EC.00264-13. Epub 2013 Dec 2.

12.

Genome, functional gene annotation, and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP1779.

Vieler A, Wu G, Tsai CH, Bullard B, Cornish AJ, Harvey C, Reca IB, Thornburg C, Achawanantakun R, Buehl CJ, Campbell MS, Cavalier D, Childs KL, Clark TJ, Deshpande R, Erickson E, Armenia Ferguson A, Handee W, Kong Q, Li X, Liu B, Lundback S, Peng C, Roston RL, Sanjaya, Simpson JP, Terbush A, Warakanont J, Zäuner S, Farre EM, Hegg EL, Jiang N, Kuo MH, Lu Y, Niyogi KK, Ohlrogge J, Osteryoung KW, Shachar-Hill Y, Sears BB, Sun Y, Takahashi H, Yandell M, Shiu SH, Benning C.

PLoS Genet. 2012;8(11):e1003064. doi: 10.1371/journal.pgen.1003064. Epub 2012 Nov 15. Erratum in: PLoS Genet. 2017 May 23;13(5):e1006802.

13.

Expression, purification and characterization of enoyl-ACP reductase II, FabK, from Porphyromonas gingivalis.

Hevener KE, Mehboob S, Boci T, Truong K, Santarsiero BD, Johnson ME.

Protein Expr Purif. 2012 Sep;85(1):100-8. doi: 10.1016/j.pep.2012.07.003. Epub 2012 Jul 20.

14.

Only one of the five Ralstonia solanacearum long-chain 3-ketoacyl-acyl carrier protein synthase homologues functions in fatty acid synthesis.

Cheng J, Ma J, Lin J, Fan ZC, Cronan JE, Wang H.

Appl Environ Microbiol. 2012 Mar;78(5):1563-73. doi: 10.1128/AEM.07335-11. Epub 2011 Dec 22.

15.

Substrate recognition by β-ketoacyl-ACP synthases.

Borgaro JG, Chang A, Machutta CA, Zhang X, Tonge PJ.

Biochemistry. 2011 Dec 13;50(49):10678-86. doi: 10.1021/bi201199x. Epub 2011 Nov 17.

16.

Engineering Escherichia coli for biodiesel production utilizing a bacterial fatty acid methyltransferase.

Nawabi P, Bauer S, Kyrpides N, Lykidis A.

Appl Environ Microbiol. 2011 Nov;77(22):8052-61. doi: 10.1128/AEM.05046-11. Epub 2011 Sep 16.

17.

The MUT056399 inhibitor of FabI is a new antistaphylococcal compound.

Escaich S, Prouvensier L, Saccomani M, Durant L, Oxoby M, Gerusz V, Moreau F, Vongsouthi V, Maher K, Morrissey I, Soulama-Mouze C.

Antimicrob Agents Chemother. 2011 Oct;55(10):4692-7. doi: 10.1128/AAC.01248-10. Epub 2011 Aug 8.

18.

The impact of fatty acids on the antibacterial properties of N-thiolated β-lactams.

Prosen KR, Carroll RK, Burda WN, Krute CN, Bhattacharya B, Dao ML, Turos E, Shaw LN.

Bioorg Med Chem Lett. 2011 Sep 15;21(18):5293-5. doi: 10.1016/j.bmcl.2011.07.029. Epub 2011 Jul 19.

19.

Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli.

Mills TY, Sandoval NR, Gill RT.

Biotechnol Biofuels. 2009 Oct 15;2:26. doi: 10.1186/1754-6834-2-26.

20.

Large D/H variations in bacterial lipids reflect central metabolic pathways.

Zhang X, Gillespie AL, Sessions AL.

Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):12580-6. doi: 10.1073/pnas.0903030106. Epub 2009 Jul 17.

Supplemental Content

Support Center