Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 18

1.

Hedgehog-dependent E3-ligase Midline1 regulates ubiquitin-mediated proteasomal degradation of Pax6 during visual system development.

Pfirrmann T, Jandt E, Ranft S, Lokapally A, Neuhaus H, Perron M, Hollemann T.

Proc Natl Acad Sci U S A. 2016 Sep 6;113(36):10103-8. doi: 10.1073/pnas.1600770113. Epub 2016 Aug 23.

2.

Efficient Gene Transfer in Chick Retinas for Primary Cell Culture Studies: An Ex-ovo Electroporation Approach.

Vergara MN, Gutierrez C, Canto-Soler MV.

J Vis Exp. 2015 Nov 2;(105):e52002. doi: 10.3791/52002.

3.

The Independent Probabilistic Firing of Transcription Factors: A Paradigm for Clonal Variability in the Zebrafish Retina.

Boije H, Rulands S, Dudczig S, Simons BD, Harris WA.

Dev Cell. 2015 Sep 14;34(5):532-43. doi: 10.1016/j.devcel.2015.08.011. Epub 2015 Sep 3.

4.

Chromatin remodelers HELLS and UHRF1 mediate the epigenetic deregulation of genes that drive retinoblastoma tumor progression.

Benavente CA, Finkelstein D, Johnson DA, Marine JC, Ashery-Padan R, Dyer MA.

Oncotarget. 2014 Oct 30;5(20):9594-608.

5.

Ex vivo electroporation of retinal cells: a novel, high efficiency method for functional studies in primary retinal cultures.

Vergara MN, Gutierrez C, O'Brien DR, Canto-Soler MV.

Exp Eye Res. 2013 Apr;109:40-50. doi: 10.1016/j.exer.2013.01.010. Epub 2013 Jan 28.

6.

Rediscovering the chick embryo as a model to study retinal development.

Vergara MN, Canto-Soler MV.

Neural Dev. 2012 Jun 27;7:22. doi: 10.1186/1749-8104-7-22. Review.

7.
8.

Vsx2 in the zebrafish retina: restricted lineages through derepression.

Vitorino M, Jusuf PR, Maurus D, Kimura Y, Higashijima S, Harris WA.

Neural Dev. 2009 Apr 3;4:14. doi: 10.1186/1749-8104-4-14.

9.

Dual requirement for Pax6 in retinal progenitor cells.

Oron-Karni V, Farhy C, Elgart M, Marquardt T, Remizova L, Yaron O, Xie Q, Cvekl A, Ashery-Padan R.

Development. 2008 Dec;135(24):4037-4047. doi: 10.1242/dev.028308. Epub 2008 Nov 12.

10.

Ectopic Pax2 expression in chick ventral optic cup phenocopies loss of Pax2 expression.

Sehgal R, Karcavich R, Carlson S, Belecky-Adams TL.

Dev Biol. 2008 Jul 1;319(1):23-33. doi: 10.1016/j.ydbio.2008.03.041. Epub 2008 Apr 11.

11.

Vsx2/Chx10 ensures the correct timing and magnitude of Hedgehog signaling in the mouse retina.

Sigulinsky CL, Green ES, Clark AM, Levine EM.

Dev Biol. 2008 May 15;317(2):560-75. doi: 10.1016/j.ydbio.2008.02.055. Epub 2008 Mar 14.

12.

Transcription factors CTCF and Pax6 are segregated to different cell types during retinal cell differentiation.

Canto-Soler MV, Huang H, Romero MS, Adler R.

Dev Dyn. 2008 Mar;237(3):758-67. doi: 10.1002/dvdy.21420.

13.
14.

Negative regulation of Vsx1 by its paralog Chx10/Vsx2 is conserved in the vertebrate retina.

Clark AM, Yun S, Veien ES, Wu YY, Chow RL, Dorsky RI, Levine EM.

Brain Res. 2008 Feb 4;1192:99-113. Epub 2007 Jun 18.

15.

Have we achieved a unified model of photoreceptor cell fate specification in vertebrates?

Adler R, Raymond PA.

Brain Res. 2008 Feb 4;1192:134-50. Epub 2007 Mar 20. Review.

16.

Chx10 is required to block photoreceptor differentiation but is dispensable for progenitor proliferation in the postnatal retina.

Livne-Bar I, Pacal M, Cheung MC, Hankin M, Trogadis J, Chen D, Dorval KM, Bremner R.

Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):4988-93. Epub 2006 Mar 17.

17.

Absence of chx10 causes neural progenitors to persist in the adult retina.

Dhomen NS, Balaggan KS, Pearson RA, Bainbridge JW, Levine EM, Ali RR, Sowden JC.

Invest Ophthalmol Vis Sci. 2006 Jan;47(1):386-96.

18.

Supplemental Content

Support Center