Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 28

1.

mixOmics: An R package for 'omics feature selection and multiple data integration.

Rohart F, Gautier B, Singh A, Lê Cao KA.

PLoS Comput Biol. 2017 Nov 3;13(11):e1005752. doi: 10.1371/journal.pcbi.1005752. eCollection 2017 Nov.

2.

Gene selection for cancer classification with the help of bees.

Moosa JM, Shakur R, Kaykobad M, Rahman MS.

BMC Med Genomics. 2016 Aug 10;9 Suppl 2:47. doi: 10.1186/s12920-016-0204-7.

3.

Semi-Supervised Projective Non-Negative Matrix Factorization for Cancer Classification.

Zhang X, Guan N, Jia Z, Qiu X, Luo Z.

PLoS One. 2015 Sep 22;10(9):e0138814. doi: 10.1371/journal.pone.0138814. eCollection 2015.

4.

Two of Them Do It Better: Novel Serum Biomarkers Improve Autoimmune Hepatitis Diagnosis.

Mazzara S, Sinisi A, Cardaci A, Rossi RL, Muratori L, Abrignani S, Bombaci M.

PLoS One. 2015 Sep 16;10(9):e0137927. doi: 10.1371/journal.pone.0137927. eCollection 2015.

5.

Comparing K-mer based methods for improved classification of 16S sequences.

Vinje H, Liland KH, Almøy T, Snipen L.

BMC Bioinformatics. 2015 Jul 1;16:205. doi: 10.1186/s12859-015-0647-4.

6.

Network-constrained group lasso for high-dimensional multinomial classification with application to cancer subtype prediction.

Tian X, Wang X, Chen J.

Cancer Inform. 2015 Jan 12;13(Suppl 6):25-33. doi: 10.4137/CIN.S17686. eCollection 2014.

7.

Applying genome-wide gene-based expression quantitative trait locus mapping to study population ancestry and pharmacogenetics.

Yang HC, Lin CW, Chen CW, Chen JJ.

BMC Genomics. 2014 Apr 29;15:319. doi: 10.1186/1471-2164-15-319.

8.

Multiclass prediction with partial least square regression for gene expression data: applications in breast cancer intrinsic taxonomy.

Huang CC, Tu SH, Huang CS, Lien HH, Lai LC, Chuang EY.

Biomed Res Int. 2013;2013:248648. doi: 10.1155/2013/248648. Epub 2013 Dec 30.

9.

Can we simplify the hospital accreditation process? Predicting accreditation decisions from a reduced dataset of focus priority standards and quality indicators: results of predictive modelling.

Guérin S, Le Pogam MA, Robillard B, Le Vaillant M, Lucet B, Gardel C, Grenier C, Loirat P.

BMJ Open. 2013 Aug 30;3(8):e003289. doi: 10.1136/bmjopen-2013-003289.

10.
11.

Stable feature selection and classification algorithms for multiclass microarray data.

Student S, Fujarewicz K.

Biol Direct. 2012 Oct 2;7:33. doi: 10.1186/1745-6150-7-33.

12.

Dimension reduction with gene expression data using targeted variable importance measurement.

Wang H, van der Laan MJ.

BMC Bioinformatics. 2011 Jul 29;12:312. doi: 10.1186/1471-2105-12-312.

13.

Mining for genotype-phenotype relations in Saccharomyces using partial least squares.

Mehmood T, Martens H, Saebø S, Warringer J, Snipen L.

BMC Bioinformatics. 2011 Aug 3;12:318. doi: 10.1186/1471-2105-12-318.

14.

Sparse PLS discriminant analysis: biologically relevant feature selection and graphical displays for multiclass problems.

Lê Cao KA, Boitard S, Besse P.

BMC Bioinformatics. 2011 Jun 22;12:253. doi: 10.1186/1471-2105-12-253.

15.

Gene expression profiling of mouse p53-deficient epidermal carcinoma defines molecular determinants of human cancer malignancy.

García-Escudero R, Martínez-Cruz AB, Santos M, Lorz C, Segrelles C, Garaulet G, Saiz-Ladera C, Costa C, Buitrago-Pérez A, Dueñas M, Paramio JM.

Mol Cancer. 2010 Jul 14;9:193. doi: 10.1186/1476-4598-9-193.

16.

Sparse partial least squares classification for high dimensional data.

Chung D, Keles S.

Stat Appl Genet Mol Biol. 2010;9:Article17. doi: 10.2202/1544-6115.1492. Epub 2010 Mar 3.

17.

SlimPLS: a method for feature selection in gene expression-based disease classification.

Gutkin M, Shamir R, Dror G.

PLoS One. 2009 Jul 29;4(7):e6416. doi: 10.1371/journal.pone.0006416.

18.

Selecting subsets of newly extracted features from PCA and PLS in microarray data analysis.

Li GZ, Bu HL, Yang MQ, Zeng XQ, Yang JY.

BMC Genomics. 2008 Sep 16;9 Suppl 2:S24. doi: 10.1186/1471-2164-9-S2-S24.

19.

Dimension reduction with redundant gene elimination for tumor classification.

Zeng XQ, Li GZ, Yang JY, Yang MQ, Wu GF.

BMC Bioinformatics. 2008 May 28;9 Suppl 6:S8. doi: 10.1186/1471-2105-9-S6-S8.

20.

Supplemental Content

Support Center