Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 28

1.

New paradigms in chemokine receptor signal transduction: Moving beyond the two-site model.

Kleist AB, Getschman AE, Ziarek JJ, Nevins AM, Gauthier PA, Chevigné A, Szpakowska M, Volkman BF.

Biochem Pharmacol. 2016 Aug 15;114:53-68. doi: 10.1016/j.bcp.2016.04.007. Review.

PMID:
27106080
2.

Preparation and Analysis of N-Terminal Chemokine Receptor Sulfopeptides Using Tyrosylprotein Sulfotransferase Enzymes.

Seibert C, Sanfiz A, Sakmar TP, Veldkamp CT.

Methods Enzymol. 2016;570:357-88. doi: 10.1016/bs.mie.2015.09.004.

3.

Short Communication: HIV-1 Variants That Use Mouse CCR5 Reveal Critical Interactions of gp120's V3 Crown with CCR5 Extracellular Loop 1.

Platt EJ, Durnin JP, Kabat D.

AIDS Res Hum Retroviruses. 2015 Oct;31(10):992-8. doi: 10.1089/AID.2015.0131.

4.

HIV-1 gp120 as a therapeutic target: navigating a moving labyrinth.

Acharya P, Lusvarghi S, Bewley CA, Kwong PD.

Expert Opin Ther Targets. 2015 Jun;19(6):765-83. doi: 10.1517/14728222.2015.1010513. Review.

5.

Site-selective solid-phase synthesis of a CCR5 sulfopeptide library to interrogate HIV binding and entry.

Liu X, Malins LR, Roche M, Sterjovski J, Duncan R, Garcia ML, Barnes NC, Anderson DA, Stone MJ, Gorry PR, Payne RJ.

ACS Chem Biol. 2014 Sep 19;9(9):2074-81. doi: 10.1021/cb500337r.

6.

The N-terminal region of the atypical chemokine receptor ACKR2 is a key determinant of ligand binding.

Hewit KD, Fraser A, Nibbs RJ, Graham GJ.

J Biol Chem. 2014 May 2;289(18):12330-42. doi: 10.1074/jbc.M113.534545.

7.
8.

The structural role of receptor tyrosine sulfation in chemokine recognition.

Ludeman JP, Stone MJ.

Br J Pharmacol. 2014 Mar;171(5):1167-79. doi: 10.1111/bph.12455. Review.

9.

A common mechanism of clinical HIV-1 resistance to the CCR5 antagonist maraviroc despite divergent resistance levels and lack of common gp120 resistance mutations.

Roche M, Salimi H, Duncan R, Wilkinson BL, Chikere K, Moore MS, Webb NE, Zappi H, Sterjovski J, Flynn JK, Ellett A, Gray LR, Lee B, Jubb B, Westby M, Ramsland PA, Lewin SR, Payne RJ, Churchill MJ, Gorry PR.

Retrovirology. 2013 Apr 20;10:43. doi: 10.1186/1742-4690-10-43.

10.

Fragment-based optimization of small molecule CXCL12 inhibitors for antagonizing the CXCL12/CXCR4 interaction.

Ziarek JJ, Liu Y, Smith E, Zhang G, Peterson FC, Chen J, Yu Y, Chen Y, Volkman BF, Li R.

Curr Top Med Chem. 2012;12(24):2727-40.

11.

Kinetic mechanism for HIV-1 neutralization by antibody 2G12 entails reversible glycan binding that slows cell entry.

Platt EJ, Gomes MM, Kabat D.

Proc Natl Acad Sci U S A. 2012 May 15;109(20):7829-34. doi: 10.1073/pnas.1109728109.

12.

Peptides from second extracellular loop of C-C chemokine receptor type 5 (CCR5) inhibit diverse strains of HIV-1.

Dogo-Isonagie C, Lam S, Gustchina E, Acharya P, Yang Y, Shahzad-ul-Hussan S, Clore GM, Kwong PD, Bewley CA.

J Biol Chem. 2012 Apr 27;287(18):15076-86. doi: 10.1074/jbc.M111.332361.

13.

Alternative coreceptor requirements for efficient CCR5- and CXCR4-mediated HIV-1 entry into macrophages.

Cashin K, Roche M, Sterjovski J, Ellett A, Gray LR, Cunningham AL, Ramsland PA, Churchill MJ, Gorry PR.

J Virol. 2011 Oct;85(20):10699-709. doi: 10.1128/JVI.05510-11.

14.

Peptide ligands selected with CD4-induced epitopes on native dualtropic HIV-1 envelope proteins mimic extracellular coreceptor domains and bind to HIV-1 gp120 independently of coreceptor usage.

Dervillez X, Klaukien V, Dürr R, Koch J, Kreutz A, Haarmann T, Stoll M, Lee D, Carlomagno T, Schnierle B, Möbius K, Königs C, Griesinger C, Dietrich U.

J Virol. 2010 Oct;84(19):10131-8. doi: 10.1128/JVI.00165-10.

15.

Two HIV-1 variants resistant to small molecule CCR5 inhibitors differ in how they use CCR5 for entry.

Berro R, Sanders RW, Lu M, Klasse PJ, Moore JP.

PLoS Pathog. 2009 Aug;5(8):e1000548. doi: 10.1371/journal.ppat.1000548.

16.

Binding thermodynamics of the N-terminal peptide of the CCR5 coreceptor to HIV-1 envelope glycoprotein gp120.

Brower ET, Schön A, Klein JC, Freire E.

Biochemistry. 2009 Feb 3;48(4):779-85. doi: 10.1021/bi8021476.

17.

Tyrosine-sulfate isosteres of CCR5 N-terminus as tools for studying HIV-1 entry.

Lam SN, Acharya P, Wyatt R, Kwong PD, Bewley CA.

Bioorg Med Chem. 2008 Dec 1;16(23):10113-20. doi: 10.1016/j.bmc.2008.10.005.

18.

Sequential tyrosine sulfation of CXCR4 by tyrosylprotein sulfotransferases.

Seibert C, Veldkamp CT, Peterson FC, Chait BT, Volkman BF, Sakmar TP.

Biochemistry. 2008 Oct 28;47(43):11251-62. doi: 10.1021/bi800965m.

19.

Evolution of CCR5 use before and during coreceptor switching.

Coetzer M, Nedellec R, Salkowitz J, McLaughlin S, Liu Y, Heath L, Mullins JI, Mosier DE.

J Virol. 2008 Dec;82(23):11758-66. doi: 10.1128/JVI.01141-08.

20.

Structural basis of CXCR4 sulfotyrosine recognition by the chemokine SDF-1/CXCL12.

Veldkamp CT, Seibert C, Peterson FC, De la Cruz NB, Haugner JC 3rd, Basnet H, Sakmar TP, Volkman BF.

Sci Signal. 2008 Sep 16;1(37):ra4. doi: 10.1126/scisignal.1160755.

Items per page

Supplemental Content

Support Center