Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 61

1.

A methylome-wide mQTL analysis reveals associations of methylation sites with GAD1 and HDAC3 SNPs and a general psychiatric risk score.

Ciuculete DM, Boström AE, Voisin S, Philipps H, Titova OE, Bandstein M, Nikontovic L, Williams MJ, Mwinyi J, Schiöth HB.

Transl Psychiatry. 2017 Jan 17;7(1):e1002. doi: 10.1038/tp.2016.275.

2.

Neuropathology of mood disorders: do we see the stigmata of inflammation?

Mechawar N, Savitz J.

Transl Psychiatry. 2016 Nov 8;6(11):e946. doi: 10.1038/tp.2016.212. Review.

3.

Cytosolic Accumulation of L-Proline Disrupts GABA-Ergic Transmission through GAD Blockade.

Crabtree GW, Park AJ, Gordon JA, Gogos JA.

Cell Rep. 2016 Oct 4;17(2):570-582. doi: 10.1016/j.celrep.2016.09.029.

4.

Cell-based therapies for the treatment of schizophrenia.

Donegan JJ, Lodge DJ.

Brain Res. 2017 Jan 15;1655:262-269. doi: 10.1016/j.brainres.2016.08.010. Epub 2016 Aug 18. Review.

PMID:
27544423
5.

Molecular evidence of synaptic pathology in the CA1 region in schizophrenia.

Matosin N, Fernandez-Enright F, Lum JS, Engel M, Andrews JL, Gassen NC, Wagner KV, Schmidt MV, Newell KA.

NPJ Schizophr. 2016 Jun 29;2:16022. doi: 10.1038/npjschz.2016.22. eCollection 2016.

6.

Sensory-Derived Glutamate Regulates Presynaptic Inhibitory Terminals in Mouse Spinal Cord.

Mende M, Fletcher EV, Belluardo JL, Pierce JP, Bommareddy PK, Weinrich JA, Kabir ZD, Schierberl KC, Pagiazitis JG, Mendelsohn AI, Francesconi A, Edwards RH, Milner TA, Rajadhyaksha AM, van Roessel PJ, Mentis GZ, Kaltschmidt JA.

Neuron. 2016 Jun 15;90(6):1189-202. doi: 10.1016/j.neuron.2016.05.008. Epub 2016 Jun 2.

7.

GAD2 Alternative Transcripts in the Human Prefrontal Cortex, and in Schizophrenia and Affective Disorders.

Davis KN, Tao R, Li C, Gao Y, Gondré-Lewis MC, Lipska BK, Shin JH, Xie B, Ye T, Weinberger DR, Kleinman JE, Hyde TM.

PLoS One. 2016 Feb 5;11(2):e0148558. doi: 10.1371/journal.pone.0148558. eCollection 2016.

8.

Maternal immune activation alters glutamic acid decarboxylase-67 expression in the brains of adult rat offspring.

Cassella SN, Hemmerle AM, Lundgren KH, Kyser TL, Ahlbrand R, Bronson SL, Richtand NM, Seroogy KB.

Schizophr Res. 2016 Mar;171(1-3):195-9. doi: 10.1016/j.schres.2016.01.041. Epub 2016 Jan 29.

9.

Epigenetic alterations following early postnatal stress: a review on novel aetiological mechanisms of common psychiatric disorders.

Jawahar MC, Murgatroyd C, Harrison EL, Baune BT.

Clin Epigenetics. 2015 Nov 14;7:122. doi: 10.1186/s13148-015-0156-3. eCollection 2015. Review.

10.

Using human brain imaging studies as a guide toward animal models of schizophrenia.

Bolkan SS, Carvalho Poyraz F, Kellendonk C.

Neuroscience. 2016 May 3;321:77-98. doi: 10.1016/j.neuroscience.2015.05.055. Epub 2015 May 30. Review.

11.

Synaptic proteins in the hippocampus indicative of increased neuronal activity in CA3 in schizophrenia.

Li W, Ghose S, Gleason K, Begovic A, Perez J, Bartko J, Russo S, Wagner AD, Selemon L, Tamminga CA.

Am J Psychiatry. 2015 Apr;172(4):373-82. doi: 10.1176/appi.ajp.2014.14010123. Epub 2015 Jan 13. Erratum in: Am J Psychiatry. 2015 May;172(5):488.

12.

Transcriptional regulation of GAD1 GABA synthesis gene in the prefrontal cortex of subjects with schizophrenia.

Mitchell AC, Jiang Y, Peter C, Akbarian S.

Schizophr Res. 2015 Sep;167(1-3):28-34. doi: 10.1016/j.schres.2014.10.020. Epub 2014 Oct 31. Review.

13.

Searching human brain for mechanisms of psychiatric disorders. Implications for studies on schizophrenia.

Berretta S, Heckers S, Benes FM.

Schizophr Res. 2015 Sep;167(1-3):91-7. doi: 10.1016/j.schres.2014.10.019. Epub 2014 Nov 11. Review.

14.

GABAergic mechanisms of hippocampal hyperactivity in schizophrenia.

Heckers S, Konradi C.

Schizophr Res. 2015 Sep;167(1-3):4-11. doi: 10.1016/j.schres.2014.09.041. Epub 2014 Oct 18. Review.

15.

Parvalbumin and GAD65 interneuron inhibition in the ventral hippocampus induces distinct behavioral deficits relevant to schizophrenia.

Nguyen R, Morrissey MD, Mahadevan V, Cajanding JD, Woodin MA, Yeomans JS, Takehara-Nishiuchi K, Kim JC.

J Neurosci. 2014 Nov 5;34(45):14948-60. doi: 10.1523/JNEUROSCI.2204-14.2014.

16.

Epigenetics and suicidal behavior research pathways.

Turecki G.

Am J Prev Med. 2014 Sep;47(3 Suppl 2):S144-51. doi: 10.1016/j.amepre.2014.06.011.

17.

Biomarkers of epileptogenesis: psychiatric comorbidities (?).

Kanner AM, Mazarati A, Koepp M.

Neurotherapeutics. 2014 Apr;11(2):358-72. doi: 10.1007/s13311-014-0271-4. Review.

18.

Selective loss of parvalbumin-positive GABAergic interneurons in the cerebral cortex of maternally stressed Gad1-heterozygous mouse offspring.

Uchida T, Furukawa T, Iwata S, Yanagawa Y, Fukuda A.

Transl Psychiatry. 2014 Mar 11;4:e371. doi: 10.1038/tp.2014.13.

19.

GAD67 deficiency in parvalbumin interneurons produces deficits in inhibitory transmission and network disinhibition in mouse prefrontal cortex.

Lazarus MS, Krishnan K, Huang ZJ.

Cereb Cortex. 2015 May;25(5):1290-6. doi: 10.1093/cercor/bht322. Epub 2013 Nov 24.

20.

Convergent and divergent functional connectivity patterns in schizophrenia and depression.

Yu Y, Shen H, Zeng LL, Ma Q, Hu D.

PLoS One. 2013 Jul 2;8(7):e68250. doi: 10.1371/journal.pone.0068250. Print 2013.

Supplemental Content

Support Center