Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 63

1.

Possible Involvement of F1F0-ATP synthase and Intracellular ATP in Keratinocyte Differentiation in normal skin and skin lesions.

Xiaoyun X, Chaofei H, Weiqi Z, Chen C, Lixia L, Queping L, Cong P, Shuang Z, Juan S, Xiang C.

Sci Rep. 2017 Feb 17;7:42672. doi: 10.1038/srep42672.

2.

Molecular Mechanisms of Increased Heart Rate in Shenxianshengmai-treated Bradycardia Rabbits.

Liu ZY, Huang J, Liu NN, Zheng M, Zhao T, Zhao BC, Wang YM, Pu JL.

Chin Med J (Engl). 2017 Jan 20;130(2):179-186. doi: 10.4103/0366-6999.197999.

3.

Biological Nanomotors with a Revolution, Linear, or Rotation Motion Mechanism.

Guo P, Noji H, Yengo CM, Zhao Z, Grainge I.

Microbiol Mol Biol Rev. 2016 Jan 27;80(1):161-86. doi: 10.1128/MMBR.00056-15. Print 2016 Mar. Review.

4.

Molecular Analysis by Gene Expression of Mitochondrial ATPase Subunits in Papillary Thyroid Cancer: Is ATP5E Transcript a Possible Early Tumor Marker?

Hurtado-López LM, Fernández-Ramírez F, Martínez-Peñafiel E, Carrillo Ruiz JD, Herrera González NE.

Med Sci Monit. 2015 Jun 16;21:1745-51. doi: 10.12659/MSM.893597.

5.

Lincomycin at Subinhibitory Concentrations Potentiates Secondary Metabolite Production by Streptomyces spp.

Imai Y, Sato S, Tanaka Y, Ochi K, Hosaka T.

Appl Environ Microbiol. 2015 Jun;81(11):3869-79. doi: 10.1128/AEM.04214-14. Epub 2015 Mar 27.

6.

Anomalous surface diffusion of protons on lipid membranes.

Wolf MG, Grubmüller H, Groenhof G.

Biophys J. 2014 Jul 1;107(1):76-87. doi: 10.1016/j.bpj.2014.04.062.

7.

The INA complex facilitates assembly of the peripheral stalk of the mitochondrial F1Fo-ATP synthase.

Lytovchenko O, Naumenko N, Oeljeklaus S, Schmidt B, von der Malsburg K, Deckers M, Warscheid B, van der Laan M, Rehling P.

EMBO J. 2014 Aug 1;33(15):1624-38. doi: 10.15252/embj.201488076. Epub 2014 Jun 18.

8.

ATP synthase: the right size base model for nanomotors in nanomedicine.

Ahmad Z, Cox JL.

ScientificWorldJournal. 2014 Jan 29;2014:567398. doi: 10.1155/2014/567398. eCollection 2014. Review.

9.

Cysteine oxidative posttranslational modifications: emerging regulation in the cardiovascular system.

Chung HS, Wang SB, Venkatraman V, Murray CI, Van Eyk JE.

Circ Res. 2013 Jan 18;112(2):382-92. doi: 10.1161/CIRCRESAHA.112.268680. Review.

10.

Twisting and subunit rotation in single F(O)(F1)-ATP synthase.

Sielaff H, Börsch M.

Philos Trans R Soc Lond B Biol Sci. 2012 Dec 24;368(1611):20120024. doi: 10.1098/rstb.2012.0024. Print 2013 Feb 5. Review.

11.

Structure and flexibility of the C-ring in the electromotor of rotary F(0)F(1)-ATPase of pea chloroplasts.

Saroussi S, Schushan M, Ben-Tal N, Junge W, Nelson N.

PLoS One. 2012;7(9):e43045. doi: 10.1371/journal.pone.0043045. Epub 2012 Sep 25.

12.

Subunit Interactions and cooperativity in the microtubule-severing AAA ATPase spastin.

Eckert T, Link S, Le DT, Sobczak JP, Gieseke A, Richter K, Woehlke G.

J Biol Chem. 2012 Jul 27;287(31):26278-90. doi: 10.1074/jbc.M111.291898. Epub 2012 May 27.

13.

Mitochondrial F(0) F(1) -ATP synthase is a molecular target of 3-iodothyronamine, an endogenous metabolite of thyroid hormone.

Cumero S, Fogolari F, Domenis R, Zucchi R, Mavelli I, Contessi S.

Br J Pharmacol. 2012 Aug;166(8):2331-47. doi: 10.1111/j.1476-5381.2012.01958.x.

14.

New mutations in the mycobacterial ATP synthase: new insights into the binding of the diarylquinoline TMC207 to the ATP synthase C-ring structure.

Segala E, Sougakoff W, Nevejans-Chauffour A, Jarlier V, Petrella S.

Antimicrob Agents Chemother. 2012 May;56(5):2326-34. doi: 10.1128/AAC.06154-11. Epub 2012 Feb 21.

15.

Thioredoxin-insensitive plastid ATP synthase that performs moonlighting functions.

Kohzuma K, Dal Bosco C, Kanazawa A, Dhingra A, Nitschke W, Meurer J, Kramer DM.

Proc Natl Acad Sci U S A. 2012 Feb 28;109(9):3293-8. doi: 10.1073/pnas.1115728109. Epub 2012 Feb 10.

16.

Glutathione s-transferase omega 1 activity is sufficient to suppress neurodegeneration in a Drosophila model of Parkinson disease.

Kim K, Kim SH, Kim J, Kim H, Yim J.

J Biol Chem. 2012 Feb 24;287(9):6628-41. doi: 10.1074/jbc.M111.291179. Epub 2012 Jan 4.

17.

The regulatory C-terminal domain of subunit ε of F₀F₁ ATP synthase is dispensable for growth and survival of Escherichia coli.

Taniguchi N, Suzuki T, Berney M, Yoshida M, Cook GM.

J Bacteriol. 2011 Apr;193(8):2046-52. doi: 10.1128/JB.01422-10. Epub 2011 Feb 18.

18.

A blue native-PAGE analysis of membrane protein complexes in Clostridium thermocellum.

Peng Y, Luo Y, Yu T, Xu X, Fan K, Zhao Y, Yang K.

BMC Microbiol. 2011 Jan 26;11(1):22. doi: 10.1186/1471-2180-11-22.

19.

Chemical reactivities of cysteine substitutions in subunit a of ATP synthase define residues gating H+ transport from each side of the membrane.

Dong H, Fillingame RH.

J Biol Chem. 2010 Dec 17;285(51):39811-8. doi: 10.1074/jbc.M110.175844. Epub 2010 Oct 13.

20.

Structure of dimeric F1F0-ATP synthase.

Couoh-Cardel SJ, Uribe-Carvajal S, Wilkens S, García-Trejo JJ.

J Biol Chem. 2010 Nov 19;285(47):36447-55. doi: 10.1074/jbc.M110.144907. Epub 2010 Sep 10.

Supplemental Content

Support Center