Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 36

1.

A cellular high-throughput screening approach for therapeutic trans-cleaving ribozymes and RNAi against arbitrary mRNA disease targets.

Yau EH, Butler MC, Sullivan JM.

Exp Eye Res. 2016 Oct;151:236-55. doi: 10.1016/j.exer.2016.05.020. Epub 2016 May 25.

PMID:
27233447
2.

Hydroxyl PAMAM dendrimer-based gene vectors for transgene delivery to human retinal pigment epithelial cells.

Mastorakos P, Kambhampati SP, Mishra MK, Wu T, Song E, Hanes J, Kannan RM.

Nanoscale. 2015 Mar 7;7(9):3845-56. doi: 10.1039/c4nr04284k.

3.

CX3CL1 (fractalkine) protein expression in normal and degenerating mouse retina: in vivo studies.

Zieger M, Ahnelt PK, Uhrin P.

PLoS One. 2014 Sep 5;9(9):e106562. doi: 10.1371/journal.pone.0106562. eCollection 2014.

4.

Drug and gene delivery to the back of the eye: from bench to bedside.

Rowe-Rendleman CL, Durazo SA, Kompella UB, Rittenhouse KD, Di Polo A, Weiner AL, Grossniklaus HE, Naash MI, Lewin AS, Horsager A, Edelhauser HF.

Invest Ophthalmol Vis Sci. 2014 Apr 28;55(4):2714-30. doi: 10.1167/iovs.13-13707. Review. No abstract available.

5.

Review: the history and role of naturally occurring mouse models with Pde6b mutations.

Han J, Dinculescu A, Dai X, Du W, Smith WC, Pang J.

Mol Vis. 2013 Dec 20;19:2579-89. Review.

6.

The Signalling Role of the avĪ²5-Integrin Can Impact the Efficacy of AAV in Retinal Gene Therapy.

Cronin T, Chung DC, Yang Y, Nandrot EF, Bennett J.

Pharmaceuticals (Basel). 2012 May 2;5(5):447-59. doi: 10.3390/ph5050447.

7.

Reprogramming of adult rod photoreceptors prevents retinal degeneration.

Montana CL, Kolesnikov AV, Shen SQ, Myers CA, Kefalov VJ, Corbo JC.

Proc Natl Acad Sci U S A. 2013 Jan 29;110(5):1732-7. doi: 10.1073/pnas.1214387110. Epub 2013 Jan 14.

8.

Rhodopsin gene expression determines rod outer segment size and rod cell resistance to a dominant-negative neurodegeneration mutant.

Price BA, Sandoval IM, Chan F, Nichols R, Roman-Sanchez R, Wensel TG, Wilson JH.

PLoS One. 2012;7(11):e49889. doi: 10.1371/journal.pone.0049889. Epub 2012 Nov 21.

9.

Autozygome-guided exome sequencing in retinal dystrophy patients reveals pathogenetic mutations and novel candidate disease genes.

Abu-Safieh L, Alrashed M, Anazi S, Alkuraya H, Khan AO, Al-Owain M, Al-Zahrani J, Al-Abdi L, Hashem M, Al-Tarimi S, Sebai MA, Shamia A, Ray-Zack MD, Nassan M, Al-Hassnan ZN, Rahbeeni Z, Waheeb S, Alkharashi A, Abboud E, Al-Hazzaa SA, Alkuraya FS.

Genome Res. 2013 Feb;23(2):236-47. doi: 10.1101/gr.144105.112. Epub 2012 Oct 26.

10.

Mutation-independent rescue of a novel mouse model of Retinitis Pigmentosa.

Greenwald DL, Cashman SM, Kumar-Singh R.

Gene Ther. 2013 Apr;20(4):425-34. doi: 10.1038/gt.2012.53. Epub 2012 Jul 19.

11.

Characterization of two dominant alleles of the major rhodopsin-encoding gene ninaE in Drosophila.

Mitra A, Chinchore Y, Kinser R, Dolph PJ.

Mol Vis. 2011;17:3224-33. Epub 2011 Dec 14.

12.

Gene delivery of wild-type rhodopsin rescues retinal function in an autosomal dominant retinitis pigmentosa mouse model.

Mao H, Gorbatyuk MS, Hauswirth WW, Lewin AS.

Adv Exp Med Biol. 2012;723:199-205. doi: 10.1007/978-1-4614-0631-0_27. No abstract available.

13.

Evaluation of contrast visual acuity in patients with retinitis pigmentosa.

Oomachi K, Ogata K, Sugawara T, Hagiwara A, Hata A, Yamamoto S.

Clin Ophthalmol. 2011;5:1459-63. doi: 10.2147/OPTH.S23070. Epub 2011 Oct 11.

14.

Variables and strategies in development of therapeutic post-transcriptional gene silencing agents.

Sullivan JM, Yau EH, Kolniak TA, Sheflin LG, Taggart RT, Abdelmaksoud HE.

J Ophthalmol. 2011;2011:531380. doi: 10.1155/2011/531380. Epub 2011 Jun 30.

15.

Zinc-finger-based transcriptional repression of rhodopsin in a model of dominant retinitis pigmentosa.

Mussolino C, Sanges D, Marrocco E, Bonetti C, Di Vicino U, Marigo V, Auricchio A, Meroni G, Surace EM.

EMBO Mol Med. 2011 Mar;3(3):118-28. doi: 10.1002/emmm.201000119. Epub 2011 Jan 26.

16.

Rapid, cell-based toxicity screen of potentially therapeutic post-transcriptional gene silencing agents.

Kolniak TA, Sullivan JM.

Exp Eye Res. 2011 May;92(5):328-37. doi: 10.1016/j.exer.2011.01.004. Epub 2011 Jan 21.

17.

Suppression and replacement gene therapy for autosomal dominant disease in a murine model of dominant retinitis pigmentosa.

Millington-Ward S, Chadderton N, O'Reilly M, Palfi A, Goldmann T, Kilty C, Humphries M, Wolfrum U, Bennett J, Humphries P, Kenna PF, Farrar GJ.

Mol Ther. 2011 Apr;19(4):642-9. doi: 10.1038/mt.2010.293. Epub 2011 Jan 11.

18.

Probing mechanisms of photoreceptor degeneration in a new mouse model of the common form of autosomal dominant retinitis pigmentosa due to P23H opsin mutations.

Sakami S, Maeda T, Bereta G, Okano K, Golczak M, Sumaroka A, Roman AJ, Cideciyan AV, Jacobson SG, Palczewski K.

J Biol Chem. 2011 Mar 25;286(12):10551-67. doi: 10.1074/jbc.M110.209759. Epub 2011 Jan 11.

19.

AAV delivery of wild-type rhodopsin preserves retinal function in a mouse model of autosomal dominant retinitis pigmentosa.

Mao H, James T Jr, Schwein A, Shabashvili AE, Hauswirth WW, Gorbatyuk MS, Lewin AS.

Hum Gene Ther. 2011 May;22(5):567-75. doi: 10.1089/hum.2010.140. Epub 2011 Mar 7.

20.

Inactivation of VCP/ter94 suppresses retinal pathology caused by misfolded rhodopsin in Drosophila.

Griciuc A, Aron L, Roux MJ, Klein R, Giangrande A, Ueffing M.

PLoS Genet. 2010 Aug 26;6(8). pii: e1001075. doi: 10.1371/journal.pgen.1001075.

Supplemental Content

Support Center