Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 50

1.

BRG1 and BRM loss selectively impacts RB and P53, respectively: BRG1 and BRM have differential functions in vivo.

Marquez-Vilendrer SB, Rai SK, Gramling SJ, Lu L, Reisman DN.

Oncoscience. 2016 Dec 21;3(11-12):337-350. doi: 10.18632/oncoscience.333. eCollection 2016.

2.

Loss of the SWI/SNF ATPase subunits BRM and BRG1 drives lung cancer development.

Marquez-Vilendrer SB, Rai SK, Gramling SJ, Lu L, Reisman DN.

Oncoscience. 2016 Nov 17;3(11-12):322-336. doi: 10.18632/oncoscience.323. eCollection 2016.

3.

BRM Promoter Polymorphisms and Survival of Advanced Non-Small Cell Lung Cancer Patients in the Princess Margaret Cohort and CCTG BR.24 Trial.

Liu G, Cuffe S, Liang S, Azad AK, Cheng L, Brhane Y, Qiu X, Cescon DW, Bruce J, Chen Z, Cheng D, Patel D, Tse BC, Laurie SA, Goss G, Leighl NB, Hung R, Bradbury PA, Seymour L, Shepherd FA, Tsao MS, Chen BE, Xu W, Reisman DN.

Clin Cancer Res. 2017 May 15;23(10):2460-2470. doi: 10.1158/1078-0432.CCR-16-1640. Epub 2016 Nov 8.

PMID:
27827316
4.

Mechanism of BRG1 silencing in primary cancers.

Marquez-Vilendrer SB, Thompson K, Lu L, Reisman D.

Oncotarget. 2016 Aug 30;7(35):56153-56169. doi: 10.18632/oncotarget.10593.

5.

The Many Roles of BAF (mSWI/SNF) and PBAF Complexes in Cancer.

Hodges C, Kirkland JG, Crabtree GR.

Cold Spring Harb Perspect Med. 2016 Aug 1;6(8). pii: a026930. doi: 10.1101/cshperspect.a026930. Review.

6.

Chromatin remodeling gene ARID2 targets cyclin D1 and cyclin E1 to suppress hepatoma cell progression.

Duan Y, Tian L, Gao Q, Liang L, Zhang W, Yang Y, Zheng Y, Pan E, Li S, Tang N.

Oncotarget. 2016 Jul 19;7(29):45863-45875. doi: 10.18632/oncotarget.10244.

7.

Transcriptional Regulation of Atp-Dependent Chromatin Remodeling Factors: Smarcal1 and Brg1 Mutually Co-Regulate Each Other.

Haokip DT, Goel I, Arya V, Sharma T, Kumari R, Priya R, Singh M, Muthuswami R.

Sci Rep. 2016 Feb 4;6:20532. doi: 10.1038/srep20532.

8.

Mammalian SWI/SNF chromatin remodeling complexes and cancer: Mechanistic insights gained from human genomics.

Kadoch C, Crabtree GR.

Sci Adv. 2015 Jun 12;1(5):e1500447. doi: 10.1126/sciadv.1500447. eCollection 2015 Jun. Review.

9.

Dual loss of the SWI/SNF complex ATPases SMARCA4/BRG1 and SMARCA2/BRM is highly sensitive and specific for small cell carcinoma of the ovary, hypercalcaemic type.

Karnezis AN, Wang Y, Ramos P, Hendricks WP, Oliva E, D'Angelo E, Prat J, Nucci MR, Nielsen TO, Chow C, Leung S, Kommoss F, Kommoss S, Silva A, Ronnett BM, Rabban JT, Bowtell DD, Weissman BE, Trent JM, Gilks CB, Huntsman DG.

J Pathol. 2016 Feb;238(3):389-400. doi: 10.1002/path.4633. Epub 2015 Dec 21.

10.

Induction of functional Brm protein from Brm knockout mice.

Thompson KW, Marquez SB, Lu L, Reisman D.

Oncoscience. 2015 Apr 18;2(4):349-61. eCollection 2015.

11.

Glucocorticoid Receptor Transcriptional Activation via the BRG1-Dependent Recruitment of TOP2β and Ku70/86.

Trotter KW, King HA, Archer TK.

Mol Cell Biol. 2015 Aug;35(16):2799-817. doi: 10.1128/MCB.00230-15. Epub 2015 Jun 8. Erratum in: Mol Cell Biol. 2017 Aug 28;37(18):.

12.

Inflammatory and oncogenic roles of a tumor stem cell marker doublecortin-like kinase (DCLK1) in virus-induced chronic liver diseases.

Ali N, Chandrakesan P, Nguyen CB, Husain S, Gillaspy AF, Huycke M, Berry WL, May R, Qu D, Weygant N, Sureban SM, Bronze MS, Dhanasekaran DN, Houchen CW.

Oncotarget. 2015 Aug 21;6(24):20327-44.

13.

The SWI/SNF ATPases Are Required for Triple Negative Breast Cancer Cell Proliferation.

Wu Q, Madany P, Akech J, Dobson JR, Douthwright S, Browne G, Colby JL, Winter GE, Bradner JE, Pratap J, Sluder G, Bhargava R, Chiosea SI, van Wijnen AJ, Stein JL, Stein GS, Lian JB, Nickerson JA, Imbalzano AN.

J Cell Physiol. 2015 Nov;230(11):2683-94. doi: 10.1002/jcp.24991.

14.

Beyond Mutations: Additional Mechanisms and Implications of SWI/SNF Complex Inactivation.

Marquez SB, Thompson KW, Lu L, Reisman D.

Front Oncol. 2015 Feb 27;4:372. doi: 10.3389/fonc.2014.00372. eCollection 2014. Review.

15.

The miR-199a/Brm/EGR1 axis is a determinant of anchorage-independent growth in epithelial tumor cell lines.

Kobayashi K, Sakurai K, Hiramatsu H, Inada K, Shiogama K, Nakamura S, Suemasa F, Kobayashi K, Imoto S, Haraguchi T, Ito H, Ishizaka A, Tsutsumi Y, Iba H.

Sci Rep. 2015 Feb 12;5:8428. doi: 10.1038/srep08428.

16.

Whole genome expression profiling shows that BRG1 transcriptionally regulates UV inducible genes and other novel targets in human cells.

Zhang L, Nemzow L, Chen H, Hu JJ, Gong F.

PLoS One. 2014 Aug 26;9(8):e105764. doi: 10.1371/journal.pone.0105764. eCollection 2014.

17.

CD44 gene polymorphisms on hepatocellular carcinoma susceptibility and clinicopathologic features.

Chou YE, Hsieh MJ, Chiou HL, Lee HL, Yang SF, Chen TY.

Biomed Res Int. 2014;2014:231474. doi: 10.1155/2014/231474. Epub 2014 May 27.

18.

The silencing of the SWI/SNF subunit and anticancer gene BRM in Rhabdoid tumors.

Kahali B, Yu J, Marquez SB, Thompson KW, Liang SY, Lu L, Reisman D.

Oncotarget. 2014 May 30;5(10):3316-32.

19.

Flavonoids from each of the six structural groups reactivate BRM, a possible cofactor for the anticancer effects of flavonoids.

Kahali B, Marquez SB, Thompson KW, Yu J, Gramling SJ, Lu L, Aponick A, Reisman D.

Carcinogenesis. 2014 Oct;35(10):2183-93. doi: 10.1093/carcin/bgu117. Epub 2014 May 29.

20.

CD44 gene polymorphisms and environmental factors on oral cancer susceptibility in Taiwan.

Chou YE, Hsieh MJ, Hsin CH, Chiang WL, Lai YC, Lee YH, Huang SC, Yang SF, Lin CW.

PLoS One. 2014 Apr 3;9(4):e93692. doi: 10.1371/journal.pone.0093692. eCollection 2014.

Supplemental Content

Support Center