Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 133

1.

KLHL41 stabilizes skeletal muscle sarcomeres by nonproteolytic ubiquitination.

Ramirez-Martinez A, Cenik BK, Bezprozvannaya S, Chen B, Bassel-Duby R, Liu N, Olson EN.

Elife. 2017 Aug 9;6. pii: e26439. doi: 10.7554/eLife.26439.

2.

Toward an understanding of the Cdc48/p97 ATPase.

Bodnar N, Rapoport T.

F1000Res. 2017 Aug 3;6:1318. doi: 10.12688/f1000research.11683.1. eCollection 2017. Review.

3.

GCL and CUL3 Control the Switch between Cell Lineages by Mediating Localized Degradation of an RTK.

Pae J, Cinalli RM, Marzio A, Pagano M, Lehmann R.

Dev Cell. 2017 Jul 24;42(2):130-142.e7. doi: 10.1016/j.devcel.2017.06.022.

PMID:
28743001
4.

Repair or destruction-an intimate liaison between ubiquitin ligases and molecular chaperones in proteostasis.

Kevei É, Pokrzywa W, Hoppe T.

FEBS Lett. 2017 Sep;591(17):2616-2635. doi: 10.1002/1873-3468.12750. Epub 2017 Jul 24. Review.

5.

Genotype-phenotype study in patients with valosin-containing protein mutations associated with multisystem proteinopathy.

Al-Obeidi E, Al-Tahan S, Surampalli A, Goyal N, Wang AK, Hermann A, Omizo M, Smith C, Mozaffar T, Kimonis V.

Clin Genet. 2018 Jan;93(1):119-125. doi: 10.1111/cge.13095.

6.

A Mighty "Protein Extractor" of the Cell: Structure and Function of the p97/CDC48 ATPase.

Ye Y, Tang WK, Zhang T, Xia D.

Front Mol Biosci. 2017 Jun 13;4:39. doi: 10.3389/fmolb.2017.00039. eCollection 2017. Review.

7.

Establishing the lipid droplet proteome: Mechanisms of lipid droplet protein targeting and degradation.

Bersuker K, Olzmann JA.

Biochim Biophys Acta. 2017 Oct;1862(10 Pt B):1166-1177. doi: 10.1016/j.bbalip.2017.06.006. Epub 2017 Jun 13. Review.

PMID:
28627435
8.

Structure and Function of p97 and Pex1/6 Type II AAA+ Complexes.

Saffert P, Enenkel C, Wendler P.

Front Mol Biosci. 2017 May 29;4:33. doi: 10.3389/fmolb.2017.00033. eCollection 2017. Review.

9.

An ubiquitin-dependent balance between mitofusin turnover and fatty acids desaturation regulates mitochondrial fusion.

Cavellini L, Meurisse J, Findinier J, Erpapazoglou Z, Belgareh-Touzé N, Weissman AM, Cohen MM.

Nat Commun. 2017 Jun 13;8:15832. doi: 10.1038/ncomms15832.

10.

Ufd2p synthesizes branched ubiquitin chains to promote the degradation of substrates modified with atypical chains.

Liu C, Liu W, Ye Y, Li W.

Nat Commun. 2017 Feb 6;8:14274. doi: 10.1038/ncomms14274.

11.

The evolving role of ubiquitin modification in endoplasmic reticulum-associated degradation.

Preston GM, Brodsky JL.

Biochem J. 2017 Feb 15;474(4):445-469. doi: 10.1042/BCJ20160582. Review.

PMID:
28159894
12.

Multiple UBXN family members inhibit retrovirus and lentivirus production and canonical NFκΒ signaling by stabilizing IκBα.

Hu Y, O'Boyle K, Auer J, Raju S, You F, Wang P, Fikrig E, Sutton RE.

PLoS Pathog. 2017 Feb 2;13(2):e1006187. doi: 10.1371/journal.ppat.1006187. eCollection 2017 Feb.

13.

Genome maintenance in Saccharomyces cerevisiae: the role of SUMO and SUMO-targeted ubiquitin ligases.

Jalal D, Chalissery J, Hassan AH.

Nucleic Acids Res. 2017 Mar 17;45(5):2242-2261. doi: 10.1093/nar/gkw1369. Review.

14.

p97 Negatively Regulates NRF2 by Extracting Ubiquitylated NRF2 from the KEAP1-CUL3 E3 Complex.

Tao S, Liu P, Luo G, Rojo de la Vega M, Chen H, Wu T, Tillotson J, Chapman E, Zhang DD.

Mol Cell Biol. 2017 Mar 31;37(8). pii: e00660-16. doi: 10.1128/MCB.00660-16. Print 2017 Apr 15.

15.

E4 ligase-specific ubiquitination hubs coordinate DNA double-strand-break repair and apoptosis.

Ackermann L, Schell M, Pokrzywa W, Kevei É, Gartner A, Schumacher B, Hoppe T.

Nat Struct Mol Biol. 2016 Nov;23(11):995-1002. doi: 10.1038/nsmb.3296. Epub 2016 Sep 26.

16.

Conserved Sequence Preferences Contribute to Substrate Recognition by the Proteasome.

Yu H, Singh Gautam AK, Wilmington SR, Wylie D, Martinez-Fonts K, Kago G, Warburton M, Chavali S, Inobe T, Finkelstein IJ, Babu MM, Matouschek A.

J Biol Chem. 2016 Jul 8;291(28):14526-39. doi: 10.1074/jbc.M116.727578. Epub 2016 May 17.

17.

Ring of Change: CDC48/p97 Drives Protein Dynamics at Chromatin.

Franz A, Ackermann L, Hoppe T.

Front Genet. 2016 May 3;7:73. doi: 10.3389/fgene.2016.00073. eCollection 2016. Review.

18.

Rqc1 and Ltn1 Prevent C-terminal Alanine-Threonine Tail (CAT-tail)-induced Protein Aggregation by Efficient Recruitment of Cdc48 on Stalled 60S Subunits.

Defenouillère Q, Zhang E, Namane A, Mouaikel J, Jacquier A, Fromont-Racine M.

J Biol Chem. 2016 Jun 3;291(23):12245-53. doi: 10.1074/jbc.M116.722264. Epub 2016 Apr 18.

19.

Structure and function of the AAA+ ATPase p97/Cdc48p.

Xia D, Tang WK, Ye Y.

Gene. 2016 May 25;583(1):64-77. doi: 10.1016/j.gene.2016.02.042. Epub 2016 Mar 3. Review.

20.

Gates, Channels, and Switches: Elements of the Proteasome Machine.

Finley D, Chen X, Walters KJ.

Trends Biochem Sci. 2016 Jan;41(1):77-93. doi: 10.1016/j.tibs.2015.10.009. Epub 2015 Nov 28. Review.

Supplemental Content

Support Center