Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 83

1.

The SH3 domain distinguishes the role of I-BAR proteins IRTKS and MIM in chemotactic response to serum.

Li L, Liu H, Baxter SS, Gu N, Ji M, Zhan X.

Biochem Biophys Res Commun. 2016 Oct 28;479(4):787-792. doi: 10.1016/j.bbrc.2016.09.131.

PMID:
27693783
2.

Modulating the dysregulated migration of pulmonary arterial hypertensive smooth muscle cells with motif mimicking cell permeable peptides.

Wilson JL, Rupasinghe C, Usheva A, Warburton R, Kaplan C, Taylor L, Hill N, Mierke DF, Polgar P.

Curr Top Pept Protein Res. 2015;16:1-17.

3.

MENA Promotes Tumor-Intrinsic Metastasis through ECM Remodeling and Haptotaxis.

Santiago-Medina M, Yang J.

Cancer Discov. 2016 May;6(5):474-6. doi: 10.1158/2159-8290.CD-16-0231.

PMID:
27138561
4.

SH2B1 orchestrates signaling events to filopodium formation during neurite outgrowth.

Chen KW, Chang YJ, Chen L.

Commun Integr Biol. 2015 Aug 31;8(4):e1044189. doi: 10.1080/19420889.2015.1044189.

5.

IRSp53 senses negative membrane curvature and phase separates along membrane tubules.

Prévost C, Zhao H, Manzi J, Lemichez E, Lappalainen P, Callan-Jones A, Bassereau P.

Nat Commun. 2015 Oct 15;6:8529. doi: 10.1038/ncomms9529.

6.

Regulation and functional significance of CDC42 alternative splicing in ovarian cancer.

He X, Yuan C, Yang J.

Oncotarget. 2015 Oct 6;6(30):29651-63. doi: 10.18632/oncotarget.4865.

7.

A Rac/Cdc42 exchange factor complex promotes formation of lateral filopodia and blood vessel lumen morphogenesis.

Abraham S, Scarcia M, Bagshaw RD, McMahon K, Grant G, Harvey T, Yeo M, Esteves FO, Thygesen HH, Jones PF, Speirs V, Hanby AM, Selby PJ, Lorger M, Dear TN, Pawson T, Marshall CJ, Mavria G.

Nat Commun. 2015 Jul 1;6:7286. doi: 10.1038/ncomms8286.

8.

The Cdc42 Effector Kinase PAK4 Localizes to Cell-Cell Junctions and Contributes to Establishing Cell Polarity.

Selamat W, Tay PL, Baskaran Y, Manser E.

PLoS One. 2015 Jun 11;10(6):e0129634. doi: 10.1371/journal.pone.0129634.

9.

Emerging roles of focal adhesion kinase in cancer.

Tai YL, Chen LC, Shen TL.

Biomed Res Int. 2015;2015:690690. doi: 10.1155/2015/690690. Review.

10.

Dynamic filopodia are required for chemokine-dependent intracellular polarization during guided cell migration in vivo.

Meyen D, Tarbashevich K, Banisch TU, Wittwer C, Reichman-Fried M, Maugis B, Grimaldi C, Messerschmidt EM, Raz E.

Elife. 2015 Apr 15;4. doi: 10.7554/eLife.05279.

11.

Force-control at cellular membranes.

Galic M, Begemann I, Viplav A, Matis M.

Bioarchitecture. 2014;4(4-5):164-8. doi: 10.1080/19490992.2015.1005524.

12.

Dynamic recruitment of the curvature-sensitive protein ArhGAP44 to nanoscale membrane deformations limits exploratory filopodia initiation in neurons.

Galic M, Tsai FC, Collins SR, Matis M, Bandara S, Meyer T.

Elife. 2014 Dec 15;3:e03116. doi: 10.7554/eLife.03116.

13.

Dynamin1 is a novel target for IRSp53 protein and works with mammalian enabled (Mena) protein and Eps8 to regulate filopodial dynamics.

Chou AM, Sem KP, Wright GD, Sudhaharan T, Ahmed S.

J Biol Chem. 2014 Aug 29;289(35):24383-96. doi: 10.1074/jbc.M114.553883.

14.

The BAR Domain Superfamily Proteins from Subcellular Structures to Human Diseases.

Safari F, Suetsugu S.

Membranes (Basel). 2012 Feb 27;2(1):91-117. doi: 10.3390/membranes2010091.

15.

Ninjurin1 enhances the basal motility and transendothelial migration of immune cells by inducing protrusive membrane dynamics.

Ahn BJ, Le H, Shin MW, Bae SJ, Lee EJ, Lee SY, Yang JH, Wee HJ, Cha JH, Seo JH, Lee HS, Lee HJ, Arai K, Lo EH, Jeon S, Oh GT, Kim WJ, Ryu JK, Suh JK, Kim KW.

J Biol Chem. 2014 Aug 8;289(32):21926-36. doi: 10.1074/jbc.M113.532358.

16.

Role of ROBO4 signalling in developmental and pathological angiogenesis.

Yadav SS, Narayan G.

Biomed Res Int. 2014;2014:683025. doi: 10.1155/2014/683025. Review.

17.

Postsynaptic distribution of IRSp53 in spiny excitatory and inhibitory neurons.

Burette AC, Park H, Weinberg RJ.

J Comp Neurol. 2014 Jun 15;522(9):2164-78. doi: 10.1002/cne.23526.

18.

Mechanism of IRSp53 inhibition and combinatorial activation by Cdc42 and downstream effectors.

Kast DJ, Yang C, Disanza A, Boczkowska M, Madasu Y, Scita G, Svitkina T, Dominguez R.

Nat Struct Mol Biol. 2014 Apr;21(4):413-22. doi: 10.1038/nsmb.2781.

19.

A large scale Huntingtin protein interaction network implicates Rho GTPase signaling pathways in Huntington disease.

Tourette C, Li B, Bell R, O'Hare S, Kaltenbach LS, Mooney SD, Hughes RE.

J Biol Chem. 2014 Mar 7;289(10):6709-26. doi: 10.1074/jbc.M113.523696.

20.

CDC42 switches IRSp53 from inhibition of actin growth to elongation by clustering of VASP.

Disanza A, Bisi S, Winterhoff M, Milanesi F, Ushakov DS, Kast D, Marighetti P, Romet-Lemonne G, Müller HM, Nickel W, Linkner J, Waterschoot D, Ampè C, Cortellino S, Palamidessi A, Dominguez R, Carlier MF, Faix J, Scita G.

EMBO J. 2013 Oct 16;32(20):2735-50. doi: 10.1038/emboj.2013.208.

Items per page

Supplemental Content

Support Center