Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 20

1.

An integrated model for motor control of song in Serinus canaria.

Alonso RG, Amador A, Mindlin GB.

J Physiol Paris. 2016 Oct;110(3 Pt A):127-139. doi: 10.1016/j.jphysparis.2016.12.003. Epub 2016 Dec 8.

PMID:
27940209
2.

Transformation of temporal sequences in the zebra finch auditory system.

Lim Y, Lagoy R, Shinn-Cunningham BG, Gardner TJ.

Elife. 2016 Nov 29;5. pii: e18205. doi: 10.7554/eLife.18205.

3.

Automatic reconstruction of physiological gestures used in a model of birdsong production.

Boari S, Perl YS, Amador A, Margoliash D, Mindlin GB.

J Neurophysiol. 2015 Nov;114(5):2912-22. doi: 10.1152/jn.00385.2015. Epub 2015 Sep 16.

4.

Mesoscopic patterns of neural activity support songbird cortical sequences.

Markowitz JE, Liberti WA 3rd, Guitchounts G, Velho T, Lois C, Gardner TJ.

PLoS Biol. 2015 Jun 3;13(6):e1002158. doi: 10.1371/journal.pbio.1002158. eCollection 2015 Jun.

5.

Vocal generalization depends on gesture identity and sequence.

Hoffmann LA, Sober SJ.

J Neurosci. 2014 Apr 16;34(16):5564-74. doi: 10.1523/JNEUROSCI.5169-13.2014.

6.

Motor control of sound frequency in birdsong involves the interaction between air sac pressure and labial tension.

Alonso R, Goller F, Mindlin GB.

Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Mar;89(3):032706. Epub 2014 Mar 10.

7.

The Physics of Birdsong Production.

Mindlin GB.

Contemp Phys. 2013 Mar 1;54(2):91-96.

8.

A mechanism for frequency modulation in songbirds shared with humans.

Amador A, Margoliash D.

J Neurosci. 2013 Jul 3;33(27):11136-44. doi: 10.1523/JNEUROSCI.5906-12.2013.

9.

Degraded time-frequency acuity to time-reversed notes.

Oppenheim JN, Isakov P, Magnasco MO.

PLoS One. 2013 Jun 17;8(6):e65386. doi: 10.1371/journal.pone.0065386. Print 2013.

10.

Long-range order in canary song.

Markowitz JE, Ivie E, Kligler L, Gardner TJ.

PLoS Comput Biol. 2013;9(5):e1003052. doi: 10.1371/journal.pcbi.1003052. Epub 2013 May 2.

11.

HTR2 receptors in a songbird premotor cortical-like area modulate spectral characteristics of zebra finch song.

Wood WE, Roseberry TK, Perkel DJ.

J Neurosci. 2013 Feb 13;33(7):2908-15. doi: 10.1523/JNEUROSCI.4291-12.2013.

12.

The songbird syrinx morphome: a three-dimensional, high-resolution, interactive morphological map of the zebra finch vocal organ.

Düring DN, Ziegler A, Thompson CK, Ziegler A, Faber C, Müller J, Scharff C, Elemans CP.

BMC Biol. 2013 Jan 8;11:1. doi: 10.1186/1741-7007-11-1.

13.

Prosthetic avian vocal organ controlled by a freely behaving bird based on a low dimensional model of the biomechanical periphery.

Arneodo EM, Perl YS, Goller F, Mindlin GB.

PLoS Comput Biol. 2012;8(6):e1002546. doi: 10.1371/journal.pcbi.1002546. Epub 2012 Jun 28.

14.

A hierarchical neuronal model for generation and online recognition of birdsongs.

Yildiz IB, Kiebel SJ.

PLoS Comput Biol. 2011 Dec;7(12):e1002303. doi: 10.1371/journal.pcbi.1002303. Epub 2011 Dec 15.

15.

Reconstruction of physiological instructions from Zebra finch song.

Perl YS, Arneodo EM, Amador A, Goller F, Mindlin GB.

Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Nov;84(5 Pt 1):051909. Epub 2011 Nov 16.

16.
17.

Representations of conspecific song by starling secondary forebrain auditory neurons: toward a hierarchical framework.

Meliza CD, Chi Z, Margoliash D.

J Neurophysiol. 2010 Mar;103(3):1195-208. doi: 10.1152/jn.00464.2009. Epub 2009 Dec 23.

18.

New perspectives on the physics of birdsong.

Trevisan MA, Mindlin GB.

Philos Trans A Math Phys Eng Sci. 2009 Aug 28;367(1901):3239-54. doi: 10.1098/rsta.2009.0076.

19.

Central contributions to acoustic variation in birdsong.

Sober SJ, Wohlgemuth MJ, Brainard MS.

J Neurosci. 2008 Oct 8;28(41):10370-9. doi: 10.1523/JNEUROSCI.2448-08.2008.

20.

Biomechanics and control of vocalization in a non-songbird.

Elemans CP, Zaccarelli R, Herzel H.

J R Soc Interface. 2008 Jul 6;5(24):691-703.

Supplemental Content

Support Center