Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 86

1.

Genome analysis of the thermoacidophilic archaeon Acidianus copahuensis focusing on the metabolisms associated to biomining activities.

Urbieta MS, Rascovan N, Vázquez MP, Donati E.

BMC Genomics. 2017 Jun 6;18(1):445. doi: 10.1186/s12864-017-3828-x.

3.

Genome Sequencing of Sulfolobus sp. A20 from Costa Rica and Comparative Analyses of the Putative Pathways of Carbon, Nitrogen, and Sulfur Metabolism in Various Sulfolobus Strains.

Dai X, Wang H, Zhang Z, Li K, Zhang X, Mora-López M, Jiang C, Liu C, Wang L, Zhu Y, Hernández-Ascencio W, Dong Z, Huang L.

Front Microbiol. 2016 Nov 30;7:1902. eCollection 2016.

4.

Increasing the Thermostable Sugar-1-Phosphate Nucleotidylyltransferase Activities of the Archaeal ST0452 Protein through Site Saturation Mutagenesis of the 97th Amino Acid Position.

Honda Y, Zang Q, Shimizu Y, Dadashipour M, Zhang Z, Kawarabayasi Y.

Appl Environ Microbiol. 2017 Jan 17;83(3). pii: e02291-16. doi: 10.1128/AEM.02291-16. Print 2017 Feb 1.

5.

Crystal Structures of Two Isozymes of Citrate Synthase from Sulfolobus tokodaii Strain 7.

Murakami M, Kouyama T.

Biochem Res Int. 2016;2016:7560919. doi: 10.1155/2016/7560919. Epub 2016 Aug 30.

6.

Crystal structures of archaeal 2-oxoacid:ferredoxin oxidoreductases from Sulfolobus tokodaii.

Yan Z, Maruyama A, Arakawa T, Fushinobu S, Wakagi T.

Sci Rep. 2016 Sep 13;6:33061. doi: 10.1038/srep33061.

7.

l-2-Haloacid dehalogenase (DehL) from Rhizobium sp. RC1.

Adamu A, Wahab RA, Huyop F.

Springerplus. 2016 May 20;5(1):695. doi: 10.1186/s40064-016-2328-9. eCollection 2016. Review.

8.

Doubling Power Output of Starch Biobattery Treated by the Most Thermostable Isoamylase from an Archaeon Sulfolobus tokodaii.

Cheng K, Zhang F, Sun F, Chen H, Percival Zhang YH.

Sci Rep. 2015 Aug 20;5:13184. doi: 10.1038/srep13184.

9.

Experimental confirmation of a whole set of tRNA molecules in two archaeal species.

Watanabe Y, Kawarabayasi Y.

Int J Mol Sci. 2015 Jan 20;16(1):2187-203. doi: 10.3390/ijms16012187.

10.

Thiosulfate transfer mediated by DsrE/TusA homologs from acidothermophilic sulfur-oxidizing archaeon Metallosphaera cuprina.

Liu LJ, Stockdreher Y, Koch T, Sun ST, Fan Z, Josten M, Sahl HG, Wang Q, Luo YM, Liu SJ, Dahl C, Jiang CY.

J Biol Chem. 2014 Sep 26;289(39):26949-59. doi: 10.1074/jbc.M114.591669. Epub 2014 Aug 13.

11.

Identification of the minimal replicon and the origin of replication of the crenarchaeal plasmid pRN1.

Berkner S, Hinojosa MP, Prangishvili D, Lipps G.

Microbiologyopen. 2014 Oct;3(5):688-701. doi: 10.1002/mbo3.198. Epub 2014 Jul 25.

12.

Draft Genome Sequence of the Sulfolobales Archaeon AZ1, Obtained through Metagenomic Analysis of a Mexican Hot Spring.

Servín-Garcidueñas LE, Martínez-Romero E.

Genome Announc. 2014 Mar 6;2(2). pii: e00164-14. doi: 10.1128/genomeA.00164-14.

13.

Carbohydrate metabolism in Archaea: current insights into unusual enzymes and pathways and their regulation.

Bräsen C, Esser D, Rauch B, Siebers B.

Microbiol Mol Biol Rev. 2014 Mar;78(1):89-175. doi: 10.1128/MMBR.00041-13. Review.

14.

A thermoacidophile-specific protein family, DUF3211, functions as a fatty acid carrier with novel binding mode.

Miyakawa T, Sawano Y, Miyazono K, Miyauchi Y, Hatano K, Tanokura M.

J Bacteriol. 2013 Sep;195(17):4005-12. doi: 10.1128/JB.00432-13. Epub 2013 Jul 8.

15.

Augmenting the genetic toolbox for Sulfolobus islandicus with a stringent positive selectable marker for agmatine prototrophy.

Zhang C, Cooper TE, Krause DJ, Whitaker RJ.

Appl Environ Microbiol. 2013 Sep;79(18):5539-49. doi: 10.1128/AEM.01608-13. Epub 2013 Jul 8.

16.

Genomics and genetics of Sulfolobus islandicus LAL14/1, a model hyperthermophilic archaeon.

Jaubert C, Danioux C, Oberto J, Cortez D, Bize A, Krupovic M, She Q, Forterre P, Prangishvili D, Sezonov G.

Open Biol. 2013 Apr 17;3(4):130010. doi: 10.1098/rsob.130010.

17.

Genetic determinants of PAM-dependent DNA targeting and pre-crRNA processing in Sulfolobus islandicus.

Peng W, Li H, Hallstrøm S, Peng N, Liang YX, She Q.

RNA Biol. 2013 May;10(5):738-48. doi: 10.4161/rna.23798. Epub 2013 Feb 7.

18.

Structural basis for a bispecific NADP+ and CoA binding site in an archaeal malonyl-coenzyme A reductase.

Demmer U, Warkentin E, Srivastava A, Kockelkorn D, Pötter M, Marx A, Fuchs G, Ermler U.

J Biol Chem. 2013 Mar 1;288(9):6363-70. doi: 10.1074/jbc.M112.421263. Epub 2013 Jan 16.

19.

An archaeal protein evolutionarily conserved in prokaryotes is a zinc-dependent metalloprotease.

Hu Y, Peng N, Han W, Mei Y, Chen Z, Feng X, Liang YX, She Q.

Biosci Rep. 2012 Dec;32(6):609-18. doi: 10.1042/BSR20120074.

20.

Differential virus host-ranges of the Fuselloviridae of hyperthermophilic Archaea: implications for evolution in extreme environments.

Ceballos RM, Marceau CD, Marceau JO, Morris S, Clore AJ, Stedman KM.

Front Microbiol. 2012 Aug 24;3:295. doi: 10.3389/fmicb.2012.00295. eCollection 2012.

Supplemental Content

Support Center