Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 41

1.

Two cases of serotypeable and non-serotypeable variants of Streptococcus pneumoniae detected simultaneously during invasive disease.

Ndlangisa KM, du Plessis M, Allam M, Wolter N, Mohale T, de Gouveia L, Birkhead M, Klugman KP, von Gottberg A.

BMC Microbiol. 2016 Jun 24;16(1):126. doi: 10.1186/s12866-016-0745-0.

2.

Pneumococcal Capsules and Their Types: Past, Present, and Future.

Geno KA, Gilbert GL, Song JY, Skovsted IC, Klugman KP, Jones C, Konradsen HB, Nahm MH.

Clin Microbiol Rev. 2015 Jul;28(3):871-99. doi: 10.1128/CMR.00024-15. Review.

3.

Mutations in pneumococcal cpsE generated via in vitro serial passaging reveal a potential mechanism of reduced encapsulation utilized by a conjunctival isolate.

Shainheit MG, Valentino MD, Gilmore MS, Camilli A.

J Bacteriol. 2015 May;197(10):1781-91. doi: 10.1128/JB.02602-14. Epub 2015 Mar 16.

4.

Sequence elements upstream of the core promoter are necessary for full transcription of the capsule gene operon in Streptococcus pneumoniae strain D39.

Wen Z, Sertil O, Cheng Y, Zhang S, Liu X, Wang WC, Zhang JR.

Infect Immun. 2015 May;83(5):1957-72. doi: 10.1128/IAI.02944-14. Epub 2015 Mar 2.

5.

Streptococcus pneumoniae biofilm formation and dispersion during colonization and disease.

Chao Y, Marks LR, Pettigrew MM, Hakansson AP.

Front Cell Infect Microbiol. 2015 Jan 13;4:194. doi: 10.3389/fcimb.2014.00194. eCollection 2014. Review.

6.

Mechanisms of genome evolution of Streptococcus.

Andam CP, Hanage WP.

Infect Genet Evol. 2015 Jul;33:334-42. doi: 10.1016/j.meegid.2014.11.007. Epub 2014 Nov 13. Review.

7.

Streptococcus pneumoniae phosphotyrosine phosphatase CpsB and alterations in capsule production resulting from changes in oxygen availability.

Geno KA, Hauser JR, Gupta K, Yother J.

J Bacteriol. 2014 Jun;196(11):1992-2003. doi: 10.1128/JB.01545-14. Epub 2014 Mar 21.

8.

The core promoter of the capsule operon of Streptococcus pneumoniae is necessary for colonization and invasive disease.

Shainheit MG, Mulé M, Camilli A.

Infect Immun. 2014 Feb;82(2):694-705. doi: 10.1128/IAI.01289-13. Epub 2013 Nov 25.

9.

The role of bacterial protein tyrosine phosphatases in the regulation of the biosynthesis of secreted polysaccharides.

Standish AJ, Morona R.

Antioxid Redox Signal. 2014 May 10;20(14):2274-89. doi: 10.1089/ars.2013.5726. Epub 2014 Mar 11. Review.

10.

Pyruvate oxidase influences the sugar utilization pattern and capsule production in Streptococcus pneumoniae.

Carvalho SM, Farshchi Andisi V, Gradstedt H, Neef J, Kuipers OP, Neves AR, Bijlsma JJ.

PLoS One. 2013 Jul 3;8(7):e68277. doi: 10.1371/journal.pone.0068277. Print 2013.

12.

Role of the alternative and classical complement activation pathway in complement mediated killing against Streptococcus pneumoniae colony opacity variants during acute pneumococcal otitis media in mice.

Li Q, Li YX, Douthitt K, Stahl GL, Thurman JM, Tong HH.

Microbes Infect. 2012 Nov;14(14):1308-18. doi: 10.1016/j.micinf.2012.08.002. Epub 2012 Aug 30.

13.

Human nasal challenge with Streptococcus pneumoniae is immunising in the absence of carriage.

Wright AK, Ferreira DM, Gritzfeld JF, Wright AD, Armitage K, Jambo KC, Bate E, El Batrawy S, Collins A, Gordon SB.

PLoS Pathog. 2012;8(4):e1002622. doi: 10.1371/journal.ppat.1002622. Epub 2012 Apr 5.

14.

Tyrosine phosphorylation and bacterial virulence.

Whitmore SE, Lamont RJ.

Int J Oral Sci. 2012 Mar;4(1):1-6. doi: 10.1038/ijos.2012.6. Epub 2012 Mar 2. Review.

15.

Strain-specific regulatory role of eukaryote-like serine/threonine phosphatase in pneumococcal adherence.

Agarwal S, Agarwal S, Pancholi P, Pancholi V.

Infect Immun. 2012 Apr;80(4):1361-72. doi: 10.1128/IAI.06311-11. Epub 2012 Feb 6.

16.

Streptococcus pneumoniae isolates from middle ear fluid and nasopharynx of children with acute otitis media exhibit phase variation.

Arai J, Hotomi M, Hollingshead SK, Ueno Y, Briles DE, Yamanaka N.

J Clin Microbiol. 2011 Apr;49(4):1646-9. doi: 10.1128/JCM.01990-10. Epub 2011 Feb 23.

17.

Membrane topology and DNA-binding ability of the Streptococcal CpsA protein.

Hanson BR, Lowe BA, Neely MN.

J Bacteriol. 2011 Jan;193(2):411-20. doi: 10.1128/JB.01098-10. Epub 2010 Nov 19.

18.

Carbonic anhydrase is essential for Streptococcus pneumoniae growth in environmental ambient air.

Burghout P, Cron LE, Gradstedt H, Quintero B, Simonetti E, Bijlsma JJ, Bootsma HJ, Hermans PW.

J Bacteriol. 2010 Aug;192(15):4054-62. doi: 10.1128/JB.00151-10. Epub 2010 Jun 4.

19.

The pneumococcus: why a commensal misbehaves.

Weiser JN.

J Mol Med (Berl). 2010 Feb;88(2):97-102. doi: 10.1007/s00109-009-0557-x. Epub 2009 Nov 7. Review.

20.

The pneumococcal response to oxidative stress includes a role for Rgg.

Bortoni ME, Terra VS, Hinds J, Andrew PW, Yesilkaya H.

Microbiology. 2009 Dec;155(Pt 12):4123-34. doi: 10.1099/mic.0.028282-0. Epub 2009 Sep 17.

Items per page

Supplemental Content

Write to the Help Desk