Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 36

1.

Regulation of Autophagy through TORC1 and mTORC1.

Noda T.

Biomolecules. 2017 Jul 7;7(3). pii: E52. doi: 10.3390/biom7030052. Review.

2.

Achieving global perfect homeostasis through transporter regulation.

Savir Y, Martynov A, Springer M.

PLoS Comput Biol. 2017 Apr 17;13(4):e1005458. doi: 10.1371/journal.pcbi.1005458. eCollection 2017 Apr.

3.

Regulation of Nitrogen Metabolism by GATA Zinc Finger Transcription Factors in Yarrowia lipolytica.

Pomraning KR, Bredeweg EL, Baker SE.

mSphere. 2017 Feb 15;2(1). pii: e00038-17. doi: 10.1128/mSphere.00038-17. eCollection 2017 Jan-Feb.

4.

General Amino Acid Control and 14-3-3 Proteins Bmh1/2 Are Required for Nitrogen Catabolite Repression-Sensitive Regulation of Gln3 and Gat1 Localization.

Tate JJ, Buford D, Rai R, Cooper TG.

Genetics. 2017 Feb;205(2):633-655. doi: 10.1534/genetics.116.195800. Epub 2016 Dec 22.

PMID:
28007891
5.

Multiple Targets on the Gln3 Transcription Activator Are Cumulatively Required for Control of Its Cytoplasmic Sequestration.

Rai R, Tate JJ, Cooper TG.

G3 (Bethesda). 2016 May 3;6(5):1391-408. doi: 10.1534/g3.116.027615.

6.

Multi-omics analysis reveals regulators of the response to nitrogen limitation in Yarrowia lipolytica.

Pomraning KR, Kim YM, Nicora CD, Chu RK, Bredeweg EL, Purvine SO, Hu D, Metz TO, Baker SE.

BMC Genomics. 2016 Feb 25;17:138. doi: 10.1186/s12864-016-2471-2.

7.
8.

Nuclear Gln3 Import Is Regulated by Nitrogen Catabolite Repression Whereas Export Is Specifically Regulated by Glutamine.

Rai R, Tate JJ, Shanmuganatham K, Howe MM, Nelson D, Cooper TG.

Genetics. 2015 Nov;201(3):989-1016. doi: 10.1534/genetics.115.177725. Epub 2015 Sep 2.

9.

Swa2, the yeast homolog of mammalian auxilin, is specifically required for the propagation of the prion variant [URE3-1].

Troisi EM, Rockman ME, Nguyen PP, Oliver EE, Hines JK.

Mol Microbiol. 2015 Sep;97(5):926-41. doi: 10.1111/mmi.13076. Epub 2015 Jun 25.

10.

GATA Factor Regulation in Excess Nitrogen Occurs Independently of Gtr-Ego Complex-Dependent TorC1 Activation.

Tate JJ, Georis I, Rai R, Vierendeels F, Dubois E, Cooper TG.

G3 (Bethesda). 2015 May 29;5(8):1625-38. doi: 10.1534/g3.115.019307.

11.

Metabolic engineering of the regulators in nitrogen catabolite repression to reduce the production of ethyl carbamate in a model rice wine system.

Zhao X, Zou H, Fu J, Zhou J, Du G, Chen J.

Appl Environ Microbiol. 2014 Jan;80(1):392-8. doi: 10.1128/AEM.03055-13. Epub 2013 Nov 1.

12.

Heritable remodeling of yeast multicellularity by an environmentally responsive prion.

Holmes DL, Lancaster AK, Lindquist S, Halfmann R.

Cell. 2013 Mar 28;153(1):153-65. doi: 10.1016/j.cell.2013.02.026.

13.

gln3 mutations dissociate responses to nitrogen limitation (nitrogen catabolite repression) and rapamycin inhibition of TorC1.

Rai R, Tate JJ, Nelson DR, Cooper TG.

J Biol Chem. 2013 Jan 25;288(4):2789-804. doi: 10.1074/jbc.M112.421826. Epub 2012 Dec 5.

14.

Alterations in the Ure2 αCap domain elicit different GATA factor responses to rapamycin treatment and nitrogen limitation.

Feller A, Georis I, Tate JJ, Cooper TG, Dubois E.

J Biol Chem. 2013 Jan 18;288(3):1841-55. doi: 10.1074/jbc.M112.385054. Epub 2012 Nov 26.

15.

Yeast prions assembly and propagation: contributions of the prion and non-prion moieties and the nature of assemblies.

Kabani M, Melki R.

Prion. 2011 Oct-Dec;5(4):277-84. doi: 10.4161/pri.18070. Epub 2011 Oct 1. Review.

16.

Nitrogen-responsive regulation of GATA protein family activators Gln3 and Gat1 occurs by two distinct pathways, one inhibited by rapamycin and the other by methionine sulfoximine.

Georis I, Tate JJ, Cooper TG, Dubois E.

J Biol Chem. 2011 Dec 30;286(52):44897-912. doi: 10.1074/jbc.M111.290577. Epub 2011 Oct 28.

17.

Intranuclear function for protein phosphatase 2A: Pph21 and Pph22 are required for rapamycin-induced GATA factor binding to the DAL5 promoter in yeast.

Georis I, Tate JJ, Feller A, Cooper TG, Dubois E.

Mol Cell Biol. 2011 Jan;31(1):92-104. doi: 10.1128/MCB.00482-10. Epub 2010 Oct 25.

18.

Ure2 is involved in nitrogen catabolite repression and salt tolerance via Ca2+ homeostasis and calcineurin activation in the yeast Hansenula polymorpha.

Rodríguez C, Tejera P, Medina B, Guillén R, Domínguez A, Ramos J, Siverio JM.

J Biol Chem. 2010 Nov 26;285(48):37551-60. doi: 10.1074/jbc.M110.146902. Epub 2010 Sep 29.

19.

Distinct phosphatase requirements and GATA factor responses to nitrogen catabolite repression and rapamycin treatment in Saccharomyces cerevisiae.

Tate JJ, Georis I, Dubois E, Cooper TG.

J Biol Chem. 2010 Jun 4;285(23):17880-95. doi: 10.1074/jbc.M109.085712. Epub 2010 Apr 8.

20.

Mutation of a phosphorylatable residue in Put3p affects the magnitude of rapamycin-induced PUT1 activation in a Gat1p-dependent manner.

Leverentz MK, Campbell RN, Connolly Y, Whetton AD, Reece RJ.

J Biol Chem. 2009 Sep 4;284(36):24115-22. doi: 10.1074/jbc.M109.030361. Epub 2009 Jul 1.

Supplemental Content

Support Center