Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 20

1.

Clinical significance of cripto-1 expression in lung adenocarcinoma.

Zhang H, Zhang B, Gao L, Zhang L, Zhu K, Cheng R, Wang C.

Oncotarget. 2017 Feb 27;8(45):79087-79098. doi: 10.18632/oncotarget.15761. eCollection 2017 Oct 3.

2.

Biological and Clinicopathological Significance of Cripto-1 Expression in the Progression of Human ESCC.

Mahmoudian RA, Abbaszadegan MR, Forghanifard MM, Moghbeli M, Moghbeli F, Chamani J, Gholamin M.

Rep Biochem Mol Biol. 2017 Apr;5(2):83-90.

3.

Cripto-1 vaccination elicits protective immunity against metastatic melanoma.

Ligtenberg MA, Witt K, Galvez-Cancino F, Sette A, Lundqvist A, Lladser A, Kiessling R.

Oncoimmunology. 2016 Jan 8;5(5):e1128613. doi: 10.1080/2162402X.2015.1128613. eCollection 2016 May.

4.

Cripto-1 ablation disrupts alveolar development in the mouse mammary gland through a progesterone receptor-mediated pathway.

Klauzinska M, McCurdy D, Rangel MC, Vaidyanath A, Castro NP, Shen MM, Gonzales M, Bertolette D, Bianco C, Callahan R, Salomon DS, Raafat A.

Am J Pathol. 2015 Nov;185(11):2907-22. doi: 10.1016/j.ajpath.2015.07.023. Epub 2015 Oct 1.

5.

Genetic variants modulating CRIPTO serum levels identified by genome-wide association study in Cilento isolates.

Ruggiero D, Nappo S, Nutile T, Sorice R, Talotta F, Giorgio E, Bellenguez C, Leutenegger AL, Liguori GL, Ciullo M.

PLoS Genet. 2015 Jan 28;11(1):e1004976. doi: 10.1371/journal.pgen.1004976. eCollection 2015 Jan.

6.

CRIPTO overexpression promotes mesenchymal differentiation in prostate carcinoma cells through parallel regulation of AKT and FGFR activities.

Terry S, El-Sayed IY, Destouches D, Maillé P, Nicolaiew N, Ploussard G, Semprez F, Pimpie C, Beltran H, Londono-Vallejo A, Allory Y, de la Taille A, Salomon DS, Vacherot F.

Oncotarget. 2015 May 20;6(14):11994-2008.

7.

The multifaceted role of the embryonic gene Cripto-1 in cancer, stem cells and epithelial-mesenchymal transition.

Klauzinska M, Castro NP, Rangel MC, Spike BT, Gray PC, Bertolette D, Cuttitta F, Salomon D.

Semin Cancer Biol. 2014 Dec;29:51-8. doi: 10.1016/j.semcancer.2014.08.003. Epub 2014 Aug 19. Review.

8.

Cripto-1 enhances the canonical Wnt/β-catenin signaling pathway by binding to LRP5 and LRP6 co-receptors.

Nagaoka T, Karasawa H, Turbyville T, Rangel MC, Castro NP, Gonzales M, Baker A, Seno M, Lockett S, Greer YE, Rubin JS, Salomon DS, Bianco C.

Cell Signal. 2013 Jan;25(1):178-89. doi: 10.1016/j.cellsig.2012.09.024. Epub 2012 Sep 27.

9.

Role of Cripto-1 during epithelial-to-mesenchymal transition in development and cancer.

Rangel MC, Karasawa H, Castro NP, Nagaoka T, Salomon DS, Bianco C.

Am J Pathol. 2012 Jun;180(6):2188-200. doi: 10.1016/j.ajpath.2012.02.031. Epub 2012 Apr 26. Review.

10.

Tension, free space, and cell damage in a microfluidic wound healing assay.

Murrell M, Kamm R, Matsudaira P.

PLoS One. 2011;6(9):e24283. doi: 10.1371/journal.pone.0024283. Epub 2011 Sep 6.

11.

Nodal and activin receptor-like kinase 7 induce apoptosis in human breast cancer cell lines: Role of caspase 3.

Zhong Y, Xu G, Ye G, Lee D, Modica-Amore J, Peng C.

Int J Physiol Pathophysiol Pharmacol. 2009 Feb 27;1(1):83-96.

12.

Targeting the embryonic gene Cripto-1 in cancer and beyond.

Bianco C, Salomon DS.

Expert Opin Ther Pat. 2010 Dec;20(12):1739-49. doi: 10.1517/13543776.2010.530659. Epub 2010 Nov 13. Review.

13.

Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression.

Micalizzi DS, Farabaugh SM, Ford HL.

J Mammary Gland Biol Neoplasia. 2010 Jun;15(2):117-34. doi: 10.1007/s10911-010-9178-9. Epub 2010 May 19. Review.

14.

Msx2 induces epithelial-mesenchymal transition in mouse mammary epithelial cells through upregulation of Cripto-1.

di Bari MG, Ginsburg E, Plant J, Strizzi L, Salomon DS, Vonderhaar BK.

J Cell Physiol. 2009 Jun;219(3):659-66. doi: 10.1002/jcp.21712.

15.

Emerging roles of nodal and Cripto-1: from embryogenesis to breast cancer progression.

Strizzi L, Postovit LM, Margaryan NV, Seftor EA, Abbott DE, Seftor RE, Salomon DS, Hendrix MJ.

Breast Dis. 2008;29:91-103.

16.

Activation of a Nodal-independent signaling pathway by Cripto-1 mutants with impaired activation of a Nodal-dependent signaling pathway.

Bianco C, Mysliwiec M, Watanabe K, Mancino M, Nagaoka T, Gonzales M, Salomon DS.

FEBS Lett. 2008 Dec 10;582(29):3997-4002. doi: 10.1016/j.febslet.2008.10.052. Epub 2008 Nov 18.

17.

Regulation of Cripto-1 signaling and biological activity by caveolin-1 in mammary epithelial cells.

Bianco C, Strizzi L, Mancino M, Watanabe K, Gonzales M, Hamada S, Raafat A, Sahlah L, Chang C, Sotgia F, Normanno N, Lisanti M, Salomon DS.

Am J Pathol. 2008 Feb;172(2):345-57. doi: 10.2353/ajpath.2008.070696. Epub 2008 Jan 17.

18.

Cripto binds transforming growth factor beta (TGF-beta) and inhibits TGF-beta signaling.

Gray PC, Shani G, Aung K, Kelber J, Vale W.

Mol Cell Biol. 2006 Dec;26(24):9268-78. Epub 2006 Oct 9. Erratum in: Mol Cell Biol. 2008 Dec;28(23):7260.

19.

Overexpression of human Cripto-1 in transgenic mice delays mammary gland development and differentiation and induces mammary tumorigenesis.

Sun Y, Strizzi L, Raafat A, Hirota M, Bianco C, Feigenbaum L, Kenney N, Wechselberger C, Callahan R, Salomon DS.

Am J Pathol. 2005 Aug;167(2):585-97.

20.

Cripto-1 activates nodal- and ALK4-dependent and -independent signaling pathways in mammary epithelial Cells.

Bianco C, Adkins HB, Wechselberger C, Seno M, Normanno N, De Luca A, Sun Y, Khan N, Kenney N, Ebert A, Williams KP, Sanicola M, Salomon DS.

Mol Cell Biol. 2002 Apr;22(8):2586-97.

Supplemental Content

Support Center