Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 43

1.

Whole exome sequencing using Ion Proton system enables reliable genetic diagnosis of inherited retinal dystrophies.

Riera M, Navarro R, Ruiz-Nogales S, Méndez P, Burés-Jelstrup A, Corcóstegui B, Pomares E.

Sci Rep. 2017 Feb 9;7:42078. doi: 10.1038/srep42078.

2.

Unravelling the genetic basis of simplex Retinitis Pigmentosa cases.

Bravo-Gil N, González-Del Pozo M, Martín-Sánchez M, Méndez-Vidal C, Rodríguez-de la Rúa E, Borrego S, Antiñolo G.

Sci Rep. 2017 Feb 3;7:41937. doi: 10.1038/srep41937.

3.

Biallelic Mutation of ARHGEF18, Involved in the Determination of Epithelial Apicobasal Polarity, Causes Adult-Onset Retinal Degeneration.

Arno G, Carss KJ, Hull S, Zihni C, Robson AG, Fiorentino A; UK Inherited Retinal Disease Consortium., Hardcastle AJ, Holder GE, Cheetham ME, Plagnol V; NIHR Bioresource - Rare Diseases Consortium., Moore AT, Raymond FL, Matter K, Balda MS, Webster AR.

Am J Hum Genet. 2017 Feb 2;100(2):334-342. doi: 10.1016/j.ajhg.2016.12.014.

PMID:
28132693
4.

The retinal phenotype of Grk1-/- is compromised by a Crb1 rd8 mutation.

Pak JS, Lee EJ, Craft CM.

Mol Vis. 2015 Nov 30;21:1281-94.

5.

Next-generation sequencing applied to a large French cone and cone-rod dystrophy cohort: mutation spectrum and new genotype-phenotype correlation.

Boulanger-Scemama E, El Shamieh S, Démontant V, Condroyer C, Antonio A, Michiels C, Boyard F, Saraiva JP, Letexier M, Souied E, Mohand-Saïd S, Sahel JA, Zeitz C, Audo I.

Orphanet J Rare Dis. 2015 Jun 24;10:85. doi: 10.1186/s13023-015-0300-3.

6.

A network comprising short and long noncoding RNAs and RNA helicase controls mouse retina architecture.

Krol J, Krol I, Alvarez CP, Fiscella M, Hierlemann A, Roska B, Filipowicz W.

Nat Commun. 2015 Jun 4;6:7305. doi: 10.1038/ncomms8305.

7.

Presence of rd8 mutation does not alter the ocular phenotype of late-onset retinal degeneration mouse model.

Sahu B, Chavali VR, Alapati A, Suk J, Bartsch DU, Jablonski MM, Ayyagari R.

Mol Vis. 2015 Mar 13;21:273-84.

8.

Review and update on the molecular basis of Leber congenital amaurosis.

Chacon-Camacho OF, Zenteno JC.

World J Clin Cases. 2015 Feb 16;3(2):112-24. doi: 10.12998/wjcc.v3.i2.112. Review.

9.

The severity of retinal pathology in homozygous Crb1rd8/rd8 mice is dependent on additional genetic factors.

Luhmann UF, Carvalho LS, Holthaus SM, Cowing JA, Greenaway S, Chu CJ, Herrmann P, Smith AJ, Munro PM, Potter P, Bainbridge JW, Ali RR.

Hum Mol Genet. 2015 Jan 1;24(1):128-41. doi: 10.1093/hmg/ddu424.

10.

The Par-PrkC polarity complex is required for cilia growth in zebrafish photoreceptors.

Krock BL, Perkins BD.

PLoS One. 2014 Aug 21;9(8):e104661. doi: 10.1371/journal.pone.0104661.

11.

Mutation screening of retinal dystrophy patients by targeted capture from tagged pooled DNAs and next generation sequencing.

Watson CM, El-Asrag M, Parry DA, Morgan JE, Logan CV, Carr IM, Sheridan E, Charlton R, Johnson CA, Taylor G, Toomes C, McKibbin M, Inglehearn CF, Ali M.

PLoS One. 2014 Aug 18;9(8):e104281. doi: 10.1371/journal.pone.0104281.

12.

Whole exome sequencing identifies CRB1 defect in an unusual maculopathy phenotype.

Tsang SH, Burke T, Oll M, Yzer S, Lee W, Xie YA, Allikmets R.

Ophthalmology. 2014 Sep;121(9):1773-82. doi: 10.1016/j.ophtha.2014.03.010.

13.

Novel mutations of CRB1 in Chinese families presenting with retinal dystrophies.

Yang L, Wu L, Yin X, Chen N, Li G, Ma Z.

Mol Vis. 2014 Mar 26;20:359-67.

14.

Comprehensive molecular diagnosis of 179 Leber congenital amaurosis and juvenile retinitis pigmentosa patients by targeted next generation sequencing.

Wang X, Wang H, Sun V, Tuan HF, Keser V, Wang K, Ren H, Lopez I, Zaneveld JE, Siddiqui S, Bowles S, Khan A, Salvo J, Jacobson SG, Iannaccone A, Wang F, Birch D, Heckenlively JR, Fishman GA, Traboulsi EI, Li Y, Wheaton D, Koenekoop RK, Chen R.

J Med Genet. 2013 Oct;50(10):674-88. doi: 10.1136/jmedgenet-2013-101558.

15.

A novel homozygous R764H mutation in crumbs homolog 1 causes autosomal recessive retinitis pigmentosa.

Tiab L, Largueche L, Chouchane I, Derouiche K, Munier FL, El Matri L, Schorderet DF.

Mol Vis. 2013 Apr 5;19:829-34.

16.

High frequency of CRB1 mutations as cause of Early-Onset Retinal Dystrophies in the Spanish population.

Corton M, Tatu SD, Avila-Fernandez A, Vallespín E, Tapias I, Cantalapiedra D, Blanco-Kelly F, Riveiro-Alvarez R, Bernal S, García-Sandoval B, Baiget M, Ayuso C.

Orphanet J Rare Dis. 2013 Feb 5;8:20. doi: 10.1186/1750-1172-8-20.

17.

Identification of recurrent and novel mutations in TULP1 in Pakistani families with early-onset retinitis pigmentosa.

Ajmal M, Khan MI, Micheal S, Ahmed W, Shah A, Venselaar H, Bokhari H, Azam A, Waheed NK, Collin RW, den Hollander AI, Qamar R, Cremers FP.

Mol Vis. 2012;18:1226-37.

18.

The ciliopathies: a transitional model into systems biology of human genetic disease.

Davis EE, Katsanis N.

Curr Opin Genet Dev. 2012 Jun;22(3):290-303. doi: 10.1016/j.gde.2012.04.006. Review.

19.

Crb apical polarity proteins maintain zebrafish retinal cone mosaics via intercellular binding of their extracellular domains.

Zou J, Wang X, Wei X.

Dev Cell. 2012 Jun 12;22(6):1261-74. doi: 10.1016/j.devcel.2012.03.007.

20.

Genetic ablation of Pals1 in retinal progenitor cells models the retinal pathology of Leber congenital amaurosis.

Cho SH, Kim JY, Simons DL, Song JY, Le JH, Swindell EC, Jamrich M, Wu SM, Kim S.

Hum Mol Genet. 2012 Jun 15;21(12):2663-76. doi: 10.1093/hmg/dds091.

Items per page

Supplemental Content

Support Center