Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 53

1.

Onto better TRAILs for cancer treatment.

de Miguel D, Lemke J, Anel A, Walczak H, Martinez-Lostao L.

Cell Death Differ. 2016 May;23(5):733-47. doi: 10.1038/cdd.2015.174. Epub 2016 Mar 4. Review.

2.

Autophagy-Mediated Degradation of IAPs and c-FLIP(L) Potentiates Apoptosis Induced by Combination of TRAIL and Chal-24.

Xu J, Xu X, Shi S, Wang Q, Saxton B, He W, Gou X, Jang JH, Nyunoya T, Wang X, Xing C, Zhang L, Lin Y.

J Cell Biochem. 2016 May;117(5):1136-44. doi: 10.1002/jcb.25397. Epub 2015 Nov 2.

3.

RIP1 Cleavage in the Kinase Domain Regulates TRAIL-Induced NF-κB Activation and Lymphoma Survival.

Zhang L, Blackwell K, Workman LM, Chen S, Pope MR, Janz S, Habelhah H.

Mol Cell Biol. 2015 Oct;35(19):3324-38. doi: 10.1128/MCB.00692-15. Epub 2015 Jul 20.

4.

A set of NF-κB-regulated microRNAs induces acquired TRAIL resistance in lung cancer.

Jeon YJ, Middleton J, Kim T, Laganà A, Piovan C, Secchiero P, Nuovo GJ, Cui R, Joshi P, Romano G, Di Leva G, Lee BK, Sun HL, Kim Y, Fadda P, Alder H, Garofalo M, Croce CM.

Proc Natl Acad Sci U S A. 2015 Jun 30;112(26):E3355-64. doi: 10.1073/pnas.1504630112. Epub 2015 Jun 15. Erratum in: Proc Natl Acad Sci U S A. 2017 Mar 13;:. Proc Natl Acad Sci U S A. 2017 Mar 21;114(12 ):E2542.

5.

Targeting TNF-related apoptosis-inducing ligand (TRAIL) receptor by natural products as a potential therapeutic approach for cancer therapy.

Dai X, Zhang J, Arfuso F, Chinnathambi A, Zayed ME, Alharbi SA, Kumar AP, Ahn KS, Sethi G.

Exp Biol Med (Maywood). 2015 Jun;240(6):760-73. doi: 10.1177/1535370215579167. Epub 2015 Apr 7. Review.

6.

TRAIL activates JNK and NF-κB through RIP1-dependent and -independent pathways.

Zhang L, Dittmer MR, Blackwell K, Workman LM, Hostager B, Habelhah H.

Cell Signal. 2015 Feb;27(2):306-14. doi: 10.1016/j.cellsig.2014.11.014. Epub 2014 Nov 18.

7.

Synthesis and SAR studies of novel 6,7,8-substituted 4-substituted benzyloxyquinolin-2(1H)-one derivatives for anticancer activity.

Chen YF, Lin YC, Morris-Natschke SL, Wei CF, Shen TC, Lin HY, Hsu MH, Chou LC, Zhao Y, Kuo SC, Lee KH, Huang LJ.

Br J Pharmacol. 2015 Mar;172(5):1195-221. doi: 10.1111/bph.12992. Epub 2015 Jan 13.

8.

TRAF2 inhibits TRAIL- and CD95L-induced apoptosis and necroptosis.

Karl I, Jossberger-Werner M, Schmidt N, Horn S, Goebeler M, Leverkus M, Wajant H, Giner T.

Cell Death Dis. 2014 Oct 9;5:e1444. doi: 10.1038/cddis.2014.404. Erratum in: Cell Death Dis. 2014;5:e1556.

9.

RIP kinases: key decision makers in cell death and innate immunity.

Humphries F, Yang S, Wang B, Moynagh PN.

Cell Death Differ. 2015 Feb;22(2):225-36. doi: 10.1038/cdd.2014.126. Epub 2014 Aug 22. Review.

10.

A signaling pathway consisting of miR-551b, catalase and MUC1 contributes to acquired apoptosis resistance and chemoresistance.

Xu X, Wells A, Padilla MT, Kato K, Kim KC, Lin Y.

Carcinogenesis. 2014 Nov;35(11):2457-66. doi: 10.1093/carcin/bgu159. Epub 2014 Aug 1.

11.

RIPK1 blocks early postnatal lethality mediated by caspase-8 and RIPK3.

Dillon CP, Weinlich R, Rodriguez DA, Cripps JG, Quarato G, Gurung P, Verbist KC, Brewer TL, Llambi F, Gong YN, Janke LJ, Kelliher MA, Kanneganti TD, Green DR.

Cell. 2014 May 22;157(5):1189-202. doi: 10.1016/j.cell.2014.04.018. Epub 2014 May 8.

12.

Retaining MKP1 expression and attenuating JNK-mediated apoptosis by RIP1 for cisplatin resistance through miR-940 inhibition.

Wang Q, Shi S, He W, Padilla MT, Zhang L, Wang X, Zhang B, Lin Y.

Oncotarget. 2014 Mar 15;5(5):1304-14.

13.

Necroptosis: molecular signalling and translational implications.

Giampietri C, Starace D, Petrungaro S, Filippini A, Ziparo E.

Int J Cell Biol. 2014;2014:490275. doi: 10.1155/2014/490275. Epub 2014 Jan 23. Review.

14.

Receptor-interacting protein 1 increases chemoresistance by maintaining inhibitor of apoptosis protein levels and reducing reactive oxygen species through a microRNA-146a-mediated catalase pathway.

Wang Q, Chen W, Bai L, Chen W, Padilla MT, Lin AS, Shi S, Wang X, Lin Y.

J Biol Chem. 2014 Feb 28;289(9):5654-63. doi: 10.1074/jbc.M113.526152. Epub 2014 Jan 14.

15.

Cells surviving fractional killing by TRAIL exhibit transient but sustainable resistance and inflammatory phenotypes.

Flusberg DA, Roux J, Spencer SL, Sorger PK.

Mol Biol Cell. 2013 Jul;24(14):2186-200. doi: 10.1091/mbc.E12-10-0737. Epub 2013 May 22.

16.

RIP1 potentiates BPDE-induced transformation in human bronchial epithelial cells through catalase-mediated suppression of excessive reactive oxygen species.

Wang Q, Chen W, Xu X, Li B, He W, Padilla MT, Jang JH, Nyunoya T, Amin S, Wang X, Lin Y.

Carcinogenesis. 2013 Sep;34(9):2119-28. doi: 10.1093/carcin/bgt143. Epub 2013 Apr 30.

17.

Non-canonical kinase signaling by the death ligand TRAIL in cancer cells: discord in the death receptor family.

Azijli K, Weyhenmeyer B, Peters GJ, de Jong S, Kruyt FA.

Cell Death Differ. 2013 Jul;20(7):858-68. doi: 10.1038/cdd.2013.28. Epub 2013 Apr 12. Review.

18.

Soluble TRAIL in normal pregnancy and acute pyelonephritis: a potential explanation for the susceptibility of pregnant women to microbial products and infection.

Chaemsaithong P, Romero R, Korzeniewski SJ, Schwartz AG, Stampalija T, Dong Z, Yeo L, Hernandez-Andrade E, Hassan SS, Chaiworapongsa T.

J Matern Fetal Neonatal Med. 2013 Nov;26(16):1568-75. doi: 10.3109/14767058.2013.783811. Epub 2013 Apr 22.

19.

The adaptor protein FADD and the initiator caspase-8 mediate activation of NF-κB by TRAIL.

Grunert M, Gottschalk K, Kapahnke J, Gündisch S, Kieser A, Jeremias I.

Cell Death Dis. 2012 Oct 25;3:e414. doi: 10.1038/cddis.2012.154.

20.

Attenuation of TNFSF10/TRAIL-induced apoptosis by an autophagic survival pathway involving TRAF2- and RIPK1/RIP1-mediated MAPK8/JNK activation.

He W, Wang Q, Xu J, Xu X, Padilla MT, Ren G, Gou X, Lin Y.

Autophagy. 2012 Dec;8(12):1811-21. doi: 10.4161/auto.22145. Epub 2012 Oct 10.

Supplemental Content

Support Center