Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 38

1.

Yeast metabolic chassis designs for diverse biotechnological products.

Jouhten P, Boruta T, Andrejev S, Pereira F, Rocha I, Patil KR.

Sci Rep. 2016 Jul 19;6:29694. doi: 10.1038/srep29694.

2.

Natural variation in non-coding regions underlying phenotypic diversity in budding yeast.

Salinas F, de Boer CG, Abarca V, García V, Cuevas M, Araos S, Larrondo LF, Martínez C, Cubillos FA.

Sci Rep. 2016 Feb 22;6:21849. doi: 10.1038/srep21849.

3.
4.

Enhanced ethanol production and reduced glycerol formation in fps1∆ mutants of Saccharomyces cerevisiae engineered for improved redox balancing.

Navarrete C, Nielsen J, Siewers V.

AMB Express. 2014 Dec;4(1):86. doi: 10.1186/s13568-014-0086-z. Epub 2014 Dec 11.

5.

Microbial succession and the functional potential during the fermentation of Chinese soy sauce brine.

Sulaiman J, Gan HM, Yin WF, Chan KG.

Front Microbiol. 2014 Oct 31;5:556. doi: 10.3389/fmicb.2014.00556. eCollection 2014.

6.

Improving industrial yeast strains: exploiting natural and artificial diversity.

Steensels J, Snoek T, Meersman E, Picca Nicolino M, Voordeckers K, Verstrepen KJ.

FEMS Microbiol Rev. 2014 Sep;38(5):947-95. doi: 10.1111/1574-6976.12073. Epub 2014 May 8. Review.

7.

Fine-tuning of NADH oxidase decreases byproduct accumulation in respiration deficient xylose metabolic Saccharomyces cerevisiae.

Hou J, Suo F, Wang C, Li X, Shen Y, Bao X.

BMC Biotechnol. 2014 Feb 14;14:13. doi: 10.1186/1472-6750-14-13.

8.

Evolutionary engineering of a glycerol-3-phosphate dehydrogenase-negative, acetate-reducing Saccharomyces cerevisiae strain enables anaerobic growth at high glucose concentrations.

Guadalupe-Medina V, Metz B, Oud B, van Der Graaf CM, Mans R, Pronk JT, van Maris AJ.

Microb Biotechnol. 2014 Jan;7(1):44-53. doi: 10.1111/1751-7915.12080. Epub 2013 Sep 4.

9.

Carbon dioxide fixation by Calvin-Cycle enzymes improves ethanol yield in yeast.

Guadalupe-Medina V, Wisselink HW, Luttik MA, de Hulster E, Daran JM, Pronk JT, van Maris AJ.

Biotechnol Biofuels. 2013 Aug 29;6(1):125. doi: 10.1186/1754-6834-6-125.

10.

Engineering of the glycerol decomposition pathway and cofactor regulation in an industrial yeast improves ethanol production.

Zhang L, Tang Y, Guo Z, Shi G.

J Ind Microbiol Biotechnol. 2013 Oct;40(10):1153-60. doi: 10.1007/s10295-013-1311-5. Epub 2013 Jul 30.

11.

Identification of metabolic engineering targets through analysis of optimal and sub-optimal routes.

Soons ZI, Ferreira EC, Patil KR, Rocha I.

PLoS One. 2013 Apr 23;8(4):e61648. doi: 10.1371/journal.pone.0061648. Print 2013.

12.

The metabolic costs of improving ethanol yield by reducing glycerol formation capacity under anaerobic conditions in Saccharomyces cerevisiae.

Pagliardini J, Hubmann G, Alfenore S, Nevoigt E, Bideaux C, Guillouet SE.

Microb Cell Fact. 2013 Mar 28;12:29. doi: 10.1186/1475-2859-12-29.

13.

3' Truncation of the GPD1 promoter in Saccharomyces cerevisiae for improved ethanol yield and productivity.

Ding WT, Zhang GC, Liu JJ.

Appl Environ Microbiol. 2013 May;79(10):3273-81. doi: 10.1128/AEM.03319-12. Epub 2013 Mar 15.

14.

Deletion of FPS1, encoding aquaglyceroporin Fps1p, improves xylose fermentation by engineered Saccharomyces cerevisiae.

Wei N, Xu H, Kim SR, Jin YS.

Appl Environ Microbiol. 2013 May;79(10):3193-201. doi: 10.1128/AEM.00490-13. Epub 2013 Mar 8.

15.

Quantitative 1H-NMR-metabolomics reveals extensive metabolic reprogramming and the effect of the aquaglyceroporin FPS1 in ethanol-stressed yeast cells.

Lourenço AB, Roque FC, Teixeira MC, Ascenso JR, Sá-Correia I.

PLoS One. 2013;8(2):e55439. doi: 10.1371/journal.pone.0055439. Epub 2013 Feb 8.

16.

Yeast ratio is a critical factor for sequential fermentation of papaya wine by Williopsis saturnus and Saccharomyces cerevisiae.

Lee PR, Kho SH, Yu B, Curran P, Liu SQ.

Microb Biotechnol. 2013 Jul;6(4):385-93. doi: 10.1111/1751-7915.12008. Epub 2012 Nov 22.

17.

Combined metabolic engineering of precursor and co-factor supply to increase α-santalene production by Saccharomyces cerevisiae.

Scalcinati G, Partow S, Siewers V, Schalk M, Daviet L, Nielsen J.

Microb Cell Fact. 2012 Aug 31;11:117. doi: 10.1186/1475-2859-11-117.

18.

Production of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering.

Ng CY, Jung MY, Lee J, Oh MK.

Microb Cell Fact. 2012 May 28;11:68. doi: 10.1186/1475-2859-11-68.

19.

Next-generation cellulosic ethanol technologies and their contribution to a sustainable Africa.

van Zyl WH, Chimphango AF, den Haan R, Görgens JF, Chirwa PW.

Interface Focus. 2011 Apr 6;1(2):196-211. doi: 10.1098/rsfs.2010.0017. Epub 2011 Feb 9.

20.

A novel strategy to construct yeast Saccharomyces cerevisiae strains for very high gravity fermentation.

Tao X, Zheng D, Liu T, Wang P, Zhao W, Zhu M, Jiang X, Zhao Y, Wu X.

PLoS One. 2012;7(2):e31235. doi: 10.1371/journal.pone.0031235. Epub 2012 Feb 17.

Supplemental Content

Support Center