Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 159

1.

Trehalose Polyphleates, External Cell Wall Lipids in Mycobacterium abscessus, Are Associated with the Formation of Clumps with Cording Morphology, Which Have Been Associated with Virulence.

Llorens-Fons M, Pérez-Trujillo M, Julián E, Brambilla C, Alcaide F, Byrd TF, Luquin M.

Front Microbiol. 2017 Jul 25;8:1402. doi: 10.3389/fmicb.2017.01402. eCollection 2017.

2.

Ribosome Rescue Inhibitors Kill Actively Growing and Nonreplicating Persister Mycobacterium tuberculosis Cells.

Alumasa JN, Manzanillo PS, Peterson ND, Lundrigan T, Baughn AD, Cox JS, Keiler KC.

ACS Infect Dis. 2017 Sep 8;3(9):634-644. doi: 10.1021/acsinfecdis.7b00028. Epub 2017 Aug 7.

3.

The Cording Phenotype of Mycobacterium tuberculosis Induces the Formation of Extracellular Traps in Human Macrophages.

Kalsum S, Braian C, Koeken VACM, Raffetseder J, Lindroth M, van Crevel R, Lerm M.

Front Cell Infect Microbiol. 2017 Jun 26;7:278. doi: 10.3389/fcimb.2017.00278. eCollection 2017.

4.

Neonatal Meningitis: Overcoming Challenges in Diagnosis, Prognosis, and Treatment with Omics.

Gordon SM, Srinivasan L, Harris MC.

Front Pediatr. 2017 Jun 16;5:139. doi: 10.3389/fped.2017.00139. eCollection 2017. Review.

5.

Development of a Novel Lead that Targets M. tuberculosis Polyketide Synthase 13.

Aggarwal A, Parai MK, Shetty N, Wallis D, Woolhiser L, Hastings C, Dutta NK, Galaviz S, Dhakal RC, Shrestha R, Wakabayashi S, Walpole C, Matthews D, Floyd D, Scullion P, Riley J, Epemolu O, Norval S, Snavely T, Robertson GT, Rubin EJ, Ioerger TR, Sirgel FA, van der Merwe R, van Helden PD, Keller P, Böttger EC, Karakousis PC, Lenaerts AJ, Sacchettini JC.

Cell. 2017 Jul 13;170(2):249-259.e25. doi: 10.1016/j.cell.2017.06.025. Epub 2017 Jun 29.

6.

Mycolates of Mycobacterium tuberculosis modulate the flow of cholesterol for bacillary proliferation in murine macrophages.

Vermeulen I, Baird M, Al-Dulayymi J, Smet M, Verschoor J, Grooten J.

J Lipid Res. 2017 Apr;58(4):709-718. doi: 10.1194/jlr.M073171. Epub 2017 Feb 13.

PMID:
28193630
7.

Metabolic Perspectives on Persistence.

Hartman TE, Wang Z, Jansen RS, Gardete S, Rhee KY.

Microbiol Spectr. 2017 Jan;5(1). doi: 10.1128/microbiolspec.TBTB2-0026-2016. Review.

8.

Biosynthesis and Regulation of Sulfomenaquinone, a Metabolite Associated with Virulence in Mycobacterium tuberculosis.

Sogi KM, Holsclaw CM, Fragiadakis GK, Nomura DK, Leary JA, Bertozzi CR.

ACS Infect Dis. 2016 Nov 11;2(11):800-806. Epub 2016 Aug 15.

9.
11.

Identification of a Desaturase Involved in Mycolic Acid Biosynthesis in Mycobacterium smegmatis.

Singh A, Varela C, Bhatt K, Veerapen N, Lee OY, Wu HH, Besra GS, Minnikin DE, Fujiwara N, Teramoto K, Bhatt A.

PLoS One. 2016 Oct 14;11(10):e0164253. doi: 10.1371/journal.pone.0164253. eCollection 2016.

12.

Determining the mode of action of anti-mycobacterial C17 diyne natural products using expression profiling: evidence for fatty acid biosynthesis inhibition.

Li H, Cowie A, Johnson JA, Webster D, Martyniuk CJ, Gray CA.

BMC Genomics. 2016 Aug 11;17(1):621. doi: 10.1186/s12864-016-2949-y.

13.

Deletion of a dehydratase important for intracellular growth and cording renders rough Mycobacterium abscessus avirulent.

Halloum I, Carrère-Kremer S, Blaise M, Viljoen A, Bernut A, Le Moigne V, Vilchèze C, Guérardel Y, Lutfalla G, Herrmann JL, Jacobs WR Jr, Kremer L.

Proc Natl Acad Sci U S A. 2016 Jul 19;113(29):E4228-37. doi: 10.1073/pnas.1605477113. Epub 2016 Jul 6.

14.

Real-Time Investigation of Tuberculosis Transmission: Developing the Respiratory Aerosol Sampling Chamber (RASC).

Wood R, Morrow C, Barry CE 3rd, Bryden WA, Call CJ, Hickey AJ, Rodes CE, Scriba TJ, Blackburn J, Issarow C, Mulder N, Woodward J, Moosa A, Singh V, Mizrahi V, Warner DF.

PLoS One. 2016 Jan 25;11(1):e0146658. doi: 10.1371/journal.pone.0146658. eCollection 2016.

15.

An orphaned Mce-associated membrane protein of Mycobacterium tuberculosis is a virulence factor that stabilizes Mce transporters.

Perkowski EF, Miller BK, McCann JR, Sullivan JT, Malik S, Allen IC, Godfrey V, Hayden JD, Braunstein M.

Mol Microbiol. 2016 Apr;100(1):90-107. doi: 10.1111/mmi.13303. Epub 2016 Feb 5.

16.

Cell scale host-pathogen modeling: another branch in the evolution of constraint-based methods.

Jamshidi N, Raghunathan A.

Front Microbiol. 2015 Oct 6;6:1032. doi: 10.3389/fmicb.2015.01032. eCollection 2015.

17.

Two enzymes with redundant fructose bisphosphatase activity sustain gluconeogenesis and virulence in Mycobacterium tuberculosis.

Ganapathy U, Marrero J, Calhoun S, Eoh H, de Carvalho LP, Rhee K, Ehrt S.

Nat Commun. 2015 Aug 10;6:7912. doi: 10.1038/ncomms8912.

18.

Mycolic acids: deciphering and targeting the Achilles' heel of the tubercle bacillus.

Nataraj V, Varela C, Javid A, Singh A, Besra GS, Bhatt A.

Mol Microbiol. 2015 Oct;98(1):7-16. doi: 10.1111/mmi.13101. Epub 2015 Jul 30. Review.

19.

Gene Transfer in Mycobacterium tuberculosis: Shuttle Phasmids to Enlightenment.

Jacobs WR Jr.

Microbiol Spectr. 2014 Apr;2(2). doi: 10.1128/microbiolspec.MGM2-0037-2013. Review.

20.

Mycobacterium-Host Cell Relationships in Granulomatous Lesions in a Mouse Model of Latent Tuberculous Infection.

Ufimtseva E.

Biomed Res Int. 2015;2015:948131. doi: 10.1155/2015/948131. Epub 2015 May 3.

Supplemental Content

Support Center