Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 18

1.
2.

The biological functions of Naa10 - From amino-terminal acetylation to human disease.

Dörfel MJ, Lyon GJ.

Gene. 2015 Aug 10;567(2):103-31. doi: 10.1016/j.gene.2015.04.085. Review.

3.

The Arabidopsis Cytosolic Ribosomal Proteome: From form to Function.

Carroll AJ.

Front Plant Sci. 2013 Mar 1;4:32. doi: 10.3389/fpls.2013.00032.

4.

N-terminal acetylome analyses and functional insights of the N-terminal acetyltransferase NatB.

Van Damme P, Lasa M, Polevoda B, Gazquez C, Elosegui-Artola A, Kim DS, De Juan-Pardo E, Demeyer K, Hole K, Larrea E, Timmerman E, Prieto J, Arnesen T, Sherman F, Gevaert K, Aldabe R.

Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12449-54. doi: 10.1073/pnas.1210303109.

5.

Identification of methylated proteins in the yeast small ribosomal subunit: a role for SPOUT methyltransferases in protein arginine methylation.

Young BD, Weiss DI, Zurita-Lopez CI, Webb KJ, Clarke SG, McBride AE.

Biochemistry. 2012 Jun 26;51(25):5091-104. doi: 10.1021/bi300186g.

6.

Proteome-derived peptide libraries allow detailed analysis of the substrate specificities of N(alpha)-acetyltransferases and point to hNaa10p as the post-translational actin N(alpha)-acetyltransferase.

Van Damme P, Evjenth R, Foyn H, Demeyer K, De Bock PJ, Lillehaug JR, Vandekerckhove J, Arnesen T, Gevaert K.

Mol Cell Proteomics. 2011 May;10(5):M110.004580. doi: 10.1074/mcp.M110.004580.

7.

A novel 3-methylhistidine modification of yeast ribosomal protein Rpl3 is dependent upon the YIL110W methyltransferase.

Webb KJ, Zurita-Lopez CI, Al-Hadid Q, Laganowsky A, Young BD, Lipson RS, Souda P, Faull KF, Whitelegge JP, Clarke SG.

J Biol Chem. 2010 Nov 26;285(48):37598-606. doi: 10.1074/jbc.M110.170787.

8.

Properties of Nat4, an N(alpha)-acetyltransferase of Saccharomyces cerevisiae that modifies N termini of histones H2A and H4.

Polevoda B, Hoskins J, Sherman F.

Mol Cell Biol. 2009 Jun;29(11):2913-24. doi: 10.1128/MCB.00147-08.

9.

An integrated top-down and bottom-up strategy for broadly characterizing protein isoforms and modifications.

Wu S, Lourette NM, Tolić N, Zhao R, Robinson EW, Tolmachev AV, Smith RD, Pasa-Tolić L.

J Proteome Res. 2009 Mar;8(3):1347-57. doi: 10.1021/pr800720d.

10.
11.
12.

Characterization of hARD2, a processed hARD1 gene duplicate, encoding a human protein N-alpha-acetyltransferase.

Arnesen T, Betts MJ, Pendino F, Liberles DA, Anderson D, Caro J, Kong X, Varhaug JE, Lillehaug JR.

BMC Biochem. 2006 Apr 25;7:13.

13.
14.

Dependence of ORC silencing function on NatA-mediated Nalpha acetylation in Saccharomyces cerevisiae.

Geissenhöner A, Weise C, Ehrenhofer-Murray AE.

Mol Cell Biol. 2004 Dec;24(23):10300-12.

15.

The yeast N(alpha)-acetyltransferase NatA is quantitatively anchored to the ribosome and interacts with nascent polypeptides.

Gautschi M, Just S, Mun A, Ross S, Rücknagel P, Dubaquié Y, Ehrenhofer-Murray A, Rospert S.

Mol Cell Biol. 2003 Oct;23(20):7403-14.

16.

Cytoplasmic N-terminal protein acetylation is required for efficient photosynthesis in Arabidopsis.

Pesaresi P, Gardner NA, Masiero S, Dietzmann A, Eichacker L, Wickner R, Salamini F, Leister D.

Plant Cell. 2003 Aug;15(8):1817-32.

18.

Direct mass spectrometric analysis of intact proteins of the yeast large ribosomal subunit using capillary LC/FTICR.

Lee SW, Berger SJ, Martinović S, Pasa-Tolić L, Anderson GA, Shen Y, Zhao R, Smith RD.

Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):5942-7.

Items per page

Supplemental Content

Support Center