Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 389

1.

A multiscale modelling approach to understand atherosclerosis formation: A patient-specific case study in the aortic bifurcation.

Alimohammadi M, Pichardo-Almarza C, Agu O, Díaz-Zuccarini V.

Proc Inst Mech Eng H. 2017 May;231(5):378-390. doi: 10.1177/0954411917697356.

2.

Numerical simulation of haemodynamics and low-density lipoprotein transport in the rabbit aorta and their correlation with atherosclerotic plaque thickness.

Li X, Liu X, Zhang P, Feng C, Sun A, Kang H, Deng X, Fan Y.

J R Soc Interface. 2017 Apr;14(129). pii: 20170140. doi: 10.1098/rsif.2017.0140.

PMID:
28424305
3.

The Acute Impact of Smoking One Cigarette on Cardiac Hemodynamic Parameters.

Farha KA, AbouFarha R, Bolt M.

Cardiol Res. 2011 Apr;2(2):58-65. doi: 10.4021/cr24e. Epub 2011 Mar 25.

4.

High-throughput identification of small molecules that affect human embryonic vascular development.

Vazão H, Rosa S, Barata T, Costa R, Pitrez PR, Honório I, de Vries MR, Papatsenko D, Benedito R, Saris D, Khademhosseini A, Quax PH, Pereira CF, Mercader N, Fernandes H, Ferreira L.

Proc Natl Acad Sci U S A. 2017 Apr 11;114(15):E3022-E3031. doi: 10.1073/pnas.1617451114. Epub 2017 Mar 27.

PMID:
28348206
5.

Quantification of left coronary bifurcation angles and plaques by coronary computed tomography angiography for prediction of significant coronary stenosis: A preliminary study with dual-source CT.

Cui Y, Zeng W, Yu J, Lu J, Hu Y, Diao N, Liang B, Han P, Shi H.

PLoS One. 2017 Mar 27;12(3):e0174352. doi: 10.1371/journal.pone.0174352. eCollection 2017.

6.

In Development-A New Paradigm for Understanding Vascular Disease.

Flavahan NA.

J Cardiovasc Pharmacol. 2017 May;69(5):248-263. doi: 10.1097/FJC.0000000000000480.

PMID:
28328747
7.

Computational medical imaging and hemodynamics framework for functional analysis and assessment of cardiovascular structures.

Wong KK, Wang D, Ko JK, Mazumdar J, Le TT, Ghista D.

Biomed Eng Online. 2017 Mar 21;16(1):35. doi: 10.1186/s12938-017-0326-y. Review.

8.

Shear Stress in Autophagy and Its Possible Mechanisms in the Process of Atherosclerosis.

Guo FX, Hu YW, Zheng L, Wang Q.

DNA Cell Biol. 2017 May;36(5):335-346. doi: 10.1089/dna.2017.3649. Epub 2017 Mar 13.

PMID:
28287831
9.

Automated Tuning for Parameter Identification and Uncertainty Quantification in Multi-scale Coronary Simulations.

Tran JS, Schiavazzi DE, Ramachandra AB, Kahn AM, Marsden AL.

Comput Fluids. 2017 Jan 5;142:128-138. doi: 10.1016/j.compfluid.2016.05.015. Epub 2016 May 16.

PMID:
28163340
10.

Contralateral artery enlargement predicts carotid plaque progression based on machine learning algorithm models in apoE-/- mice.

Li B, Jiao Y, Fu C, Xie B, Ma G, Teng G, Yao Y.

Biomed Eng Online. 2016 Dec 28;15(Suppl 2):146. doi: 10.1186/s12938-016-0265-z.

11.

Contrast-enhanced micro-CT imaging in murine carotid arteries: a new protocol for computing wall shear stress.

Xing R, De Wilde D, McCann G, Ridwan Y, Schrauwen JT, van der Steen AF, Gijsen FJ, Van der Heiden K.

Biomed Eng Online. 2016 Dec 28;15(Suppl 2):156. doi: 10.1186/s12938-016-0270-2.

12.

Localization of in-stent neoatherosclerosis in relation to curvatures and bifurcations after stenting.

Zou Y, Huang X, Feng L, Hou J, Xing L, Yu B.

J Thorac Dis. 2016 Dec;8(12):3530-3536. doi: 10.21037/jtd.2016.11.108.

13.

Variation in wall shear stress in channel networks of zebrafish models.

Choi W, Kim HM, Park S, Yeom E, Doh J, Lee SJ.

J R Soc Interface. 2017 Feb;14(127). pii: 20160900. doi: 10.1098/rsif.2016.0900.

PMID:
28148768
14.

High Shear Stresses under Exercise Condition Destroy Circulating Tumor Cells in a Microfluidic System.

Regmi S, Fu A, Luo KQ.

Sci Rep. 2017 Jan 5;7:39975. doi: 10.1038/srep39975.

15.

Hemodynamics in Transplant Renal Artery Stenosis and its Alteration after Stent Implantation Based on a Patient-specific Computational Fluid Dynamics Model.

Wang HY, Liu LS, Cao HM, Li J, Deng RH, Fu Q, Zhang HX, Fei JG, Wang CX.

Chin Med J (Engl). 2017 5th Jan 2017;130(1):23-31. doi: 10.4103/0366-6999.196569.

16.

LVAD Outflow Graft Angle and Thrombosis Risk.

Aliseda A, Chivukula VK, Mcgah P, Prisco AR, Beckman JA, Garcia GJ, Mokadam NA, Mahr C.

ASAIO J. 2017 Jan/Feb;63(1):14-23. doi: 10.1097/MAT.0000000000000443.

PMID:
28033200
17.

Rupture Risk Assessment for Mirror Aneurysms with Different Outcomes in the Same Patient.

Tian Z, Zhang Y, Jing L, Liu J, Zhang Y, Yang X.

Front Neurol. 2016 Dec 5;7:219. eCollection 2016.

18.

Patient-specific structural effects on hemodynamics in the ischemic lower limb artery.

Xu P, Liu X, Song Q, Chen G, Wang D, Zhang H, Yan L, Liu D, Huang W.

Sci Rep. 2016 Dec 15;6:39225. doi: 10.1038/srep39225.

19.

Bifurcation Type and Larger Low Shear Area Are Associated with Rupture Status of Very Small Intracranial Aneurysms.

Zhang Y, Tian Z, Jing L, Zhang Y, Liu J, Yang X.

Front Neurol. 2016 Nov 24;7:169. eCollection 2016.

20.

Pulsatility Index as a Diagnostic Parameter of Reciprocating Wall Shear Stress Parameters in Physiological Pulsating Waveforms.

Avrahami I, Kersh D, Liberzon A.

PLoS One. 2016 Nov 28;11(11):e0166426. doi: 10.1371/journal.pone.0166426. eCollection 2016.

Supplemental Content

Support Center