Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 37

1.

Gene-free methodology for cell fate dynamics during development.

Corson F, Siggia ED.

Elife. 2017 Dec 13;6. pii: e30743. doi: 10.7554/eLife.30743.

2.

A Real-Time Biosensor for ERK Activity Reveals Signaling Dynamics during C. elegans Cell Fate Specification.

de la Cova C, Townley R, Regot S, Greenwald I.

Dev Cell. 2017 Sep 11;42(5):542-553.e4. doi: 10.1016/j.devcel.2017.07.014. Epub 2017 Aug 17.

PMID:
28826819
3.

Global increase in replication fork speed during a p57KIP2-regulated erythroid cell fate switch.

Hwang Y, Futran M, Hidalgo D, Pop R, Iyer DR, Scully R, Rhind N, Socolovsky M.

Sci Adv. 2017 May 26;3(5):e1700298. doi: 10.1126/sciadv.1700298. eCollection 2017 May.

4.

Fluctuations of the transcription factor ATML1 generate the pattern of giant cells in the Arabidopsis sepal.

Meyer HM, Teles J, Formosa-Jordan P, Refahi Y, San-Bento R, Ingram G, Jönsson H, Locke JC, Roeder AH.

Elife. 2017 Feb 1;6. pii: e19131. doi: 10.7554/eLife.19131.

5.
6.

Dynein-mediated trafficking negatively regulates LET-23 EGFR signaling.

Skorobogata O, Meng J, Gauthier K, Rocheleau CE.

Mol Biol Cell. 2016 Sep 21. pii: mbc.E15-11-0757. [Epub ahead of print]

7.

Intermittent Stem Cell Cycling Balances Self-Renewal and Senescence of the C. elegans Germ Line.

Cinquin A, Chiang M, Paz A, Hallman S, Yuan O, Vysniauskaite I, Fowlkes CC, Cinquin O.

PLoS Genet. 2016 Apr 14;12(4):e1005985. doi: 10.1371/journal.pgen.1005985. eCollection 2016 Apr.

8.

Cell cycle features of C. elegans germline stem/progenitor cells vary temporally and spatially.

Roy D, Michaelson D, Hochman T, Santella A, Bao Z, Goldberg JD, Hubbard EJ.

Dev Biol. 2016 Jan 1;409(1):261-71. doi: 10.1016/j.ydbio.2015.10.031. Epub 2015 Nov 11.

9.

Cells change their sensitivity to an EGF morphogen gradient to control EGF-induced gene expression.

van Zon JS, Kienle S, Huelsz-Prince G, Barkoulas M, van Oudenaarden A.

Nat Commun. 2015 May 11;6:7053. doi: 10.1038/ncomms8053.

10.

Centrosome/Cell cycle uncoupling and elimination in the endoreduplicating intestinal cells of C. elegans.

Lu Y, Roy R.

PLoS One. 2014 Oct 31;9(10):e110958. doi: 10.1371/journal.pone.0110958. eCollection 2014.

11.

Engineered biomaterials control differentiation and proliferation of human-embryonic-stem-cell-derived cardiomyocytes via timed Notch activation.

Tung JC, Paige SL, Ratner BD, Murry CE, Giachelli CM.

Stem Cell Reports. 2014 Feb 27;2(3):271-81. doi: 10.1016/j.stemcr.2014.01.011. eCollection 2014 Mar 11.

12.

Cell-cycle regulation of NOTCH signaling during C. elegans vulval development.

Nusser-Stein S, Beyer A, Rimann I, Adamczyk M, Piterman N, Hajnal A, Fisher J.

Mol Syst Biol. 2012;8:618. doi: 10.1038/msb.2012.51.

13.

A novel mutation in β integrin reveals an integrin-mediated interaction between the extracellular matrix and cki-1/p27KIP1.

Kihira S, Yu EJ, Cunningham J, Cram EJ, Lee M.

PLoS One. 2012;7(8):e42425. doi: 10.1371/journal.pone.0042425. Epub 2012 Aug 6.

14.

Geometry, epistasis, and developmental patterning.

Corson F, Siggia ED.

Proc Natl Acad Sci U S A. 2012 Apr 10;109(15):5568-75. doi: 10.1073/pnas.1201505109. Epub 2012 Mar 20.

15.

The Caenorhabditis elegans SOMI-1 zinc finger protein and SWI/SNF promote regulation of development by the mir-84 microRNA.

Hayes GD, Riedel CG, Ruvkun G.

Genes Dev. 2011 Oct 1;25(19):2079-92. doi: 10.1101/gad.17153811.

16.

Initial cell type choice in Dictyostelium.

Jang W, Gomer RH.

Eukaryot Cell. 2011 Feb;10(2):150-5. doi: 10.1128/EC.00219-10. Epub 2010 Dec 10. Review.

17.
18.

LIN-14 inhibition of LIN-12 contributes to precision and timing of C. elegans vulval fate patterning.

Li J, Greenwald I.

Curr Biol. 2010 Oct 26;20(20):1875-9. doi: 10.1016/j.cub.2010.09.055. Epub 2010 Oct 14.

19.

A key commitment step in erythropoiesis is synchronized with the cell cycle clock through mutual inhibition between PU.1 and S-phase progression.

Pop R, Shearstone JR, Shen Q, Liu Y, Hallstrom K, Koulnis M, Gribnau J, Socolovsky M.

PLoS Biol. 2010 Sep 21;8(9). pii: e1000484. doi: 10.1371/journal.pbio.1000484.

20.

Can molecular motors drive distance measurements in injured neurons?

Kam N, Pilpel Y, Fainzilber M.

PLoS Comput Biol. 2009 Aug;5(8):e1000477. doi: 10.1371/journal.pcbi.1000477. Epub 2009 Aug 21.

Supplemental Content

Support Center