Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 168

1.

Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain.

Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD, Yamamoto M.

Genes Dev. 1999 Jan 1;13(1):76-86.

2.

Evolutionary conserved N-terminal domain of Nrf2 is essential for the Keap1-mediated degradation of the protein by proteasome.

Katoh Y, Iida K, Kang MI, Kobayashi A, Mizukami M, Tong KI, McMahon M, Hayes JD, Itoh K, Yamamoto M.

Arch Biochem Biophys. 2005 Jan 15;433(2):342-50. Review.

PMID:
15581590
3.

Molecular mechanism activating Nrf2-Keap1 pathway in regulation of adaptive response to electrophiles.

Itoh K, Tong KI, Yamamoto M.

Free Radic Biol Med. 2004 May 15;36(10):1208-13. Review.

PMID:
15110385
4.

Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers.

Wakabayashi N, Dinkova-Kostova AT, Holtzclaw WD, Kang MI, Kobayashi A, Yamamoto M, Kensler TW, Talalay P.

Proc Natl Acad Sci U S A. 2004 Feb 17;101(7):2040-5. Epub 2004 Feb 5.

5.

Discovery of the negative regulator of Nrf2, Keap1: a historical overview.

Itoh K, Mimura J, Yamamoto M.

Antioxid Redox Signal. 2010 Dec 1;13(11):1665-78. doi: 10.1089/ars.2010.3222. Epub 2010 Jul 13. Review.

PMID:
20446768
6.

Regulatory mechanisms of cellular response to oxidative stress.

Itoh K, Ishii T, Wakabayashi N, Yamamoto M.

Free Radic Res. 1999 Oct;31(4):319-24. Review.

PMID:
10517536
7.

Scaffolding of Keap1 to the actin cytoskeleton controls the function of Nrf2 as key regulator of cytoprotective phase 2 genes.

Kang MI, Kobayashi A, Wakabayashi N, Kim SG, Yamamoto M.

Proc Natl Acad Sci U S A. 2004 Feb 17;101(7):2046-51. Epub 2004 Feb 5.

8.

The Keap1 BTB/POZ dimerization function is required to sequester Nrf2 in cytoplasm.

Zipper LM, Mulcahy RT.

J Biol Chem. 2002 Sep 27;277(39):36544-52. Epub 2002 Jul 26.

9.

Modifying specific cysteines of the electrophile-sensing human Keap1 protein is insufficient to disrupt binding to the Nrf2 domain Neh2.

Eggler AL, Liu G, Pezzuto JM, van Breemen RB, Mesecar AD.

Proc Natl Acad Sci U S A. 2005 Jul 19;102(29):10070-5. Epub 2005 Jul 8.

10.

Nuclear oncoprotein prothymosin alpha is a partner of Keap1: implications for expression of oxidative stress-protecting genes.

Karapetian RN, Evstafieva AG, Abaeva IS, Chichkova NV, Filonov GS, Rubtsov YP, Sukhacheva EA, Melnikov SV, Schneider U, Wanker EE, Vartapetian AB.

Mol Cell Biol. 2005 Feb;25(3):1089-99.

12.

Identification of the interactive interface and phylogenic conservation of the Nrf2-Keap1 system.

Kobayashi M, Itoh K, Suzuki T, Osanai H, Nishikawa K, Katoh Y, Takagi Y, Yamamoto M.

Genes Cells. 2002 Aug;7(8):807-20.

13.
14.
15.

Nrf2 Possesses a redox-insensitive nuclear export signal overlapping with the leucine zipper motif.

Li W, Jain MR, Chen C, Yue X, Hebbar V, Zhou R, Kong AN.

J Biol Chem. 2005 Aug 5;280(31):28430-8. Epub 2005 May 23.

16.

Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2.

Kobayashi A, Kang MI, Okawa H, Ohtsuji M, Zenke Y, Chiba T, Igarashi K, Yamamoto M.

Mol Cell Biol. 2004 Aug;24(16):7130-9.

17.

Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulation.

Kobayashi M, Yamamoto M.

Antioxid Redox Signal. 2005 Mar-Apr;7(3-4):385-94. Review.

PMID:
15706085
18.

Unique function of the Nrf2-Keap1 pathway in the inducible expression of antioxidant and detoxifying enzymes.

Kobayashi A, Ohta T, Yamamoto M.

Methods Enzymol. 2004;378:273-86. Review. No abstract available.

PMID:
15038975
19.

Redox-regulated turnover of Nrf2 is determined by at least two separate protein domains, the redox-sensitive Neh2 degron and the redox-insensitive Neh6 degron.

McMahon M, Thomas N, Itoh K, Yamamoto M, Hayes JD.

J Biol Chem. 2004 Jul 23;279(30):31556-67. Epub 2004 May 13.

Supplemental Content

Support Center