Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 556

1.

In vivo function of Hsp90 is dependent on ATP binding and ATP hydrolysis.

Obermann WM, Sondermann H, Russo AA, Pavletich NP, Hartl FU.

J Cell Biol. 1998 Nov 16;143(4):901-10.

2.

Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone.

Prodromou C, Roe SM, O'Brien R, Ladbury JE, Piper PW, Pearl LH.

Cell. 1997 Jul 11;90(1):65-75.

3.

The amino-terminal domain of heat shock protein 90 (hsp90) that binds geldanamycin is an ATP/ADP switch domain that regulates hsp90 conformation.

Grenert JP, Sullivan WP, Fadden P, Haystead TA, Clark J, Mimnaugh E, Krutzsch H, Ochel HJ, Schulte TW, Sausville E, Neckers LM, Toft DO.

J Biol Chem. 1997 Sep 19;272(38):23843-50.

4.

C-terminal regions of Hsp90 are important for trapping the nucleotide during the ATPase cycle.

Weikl T, Muschler P, Richter K, Veit T, Reinstein J, Buchner J.

J Mol Biol. 2000 Nov 3;303(4):583-92.

PMID:
11054293
5.

Co-chaperone regulation of conformational switching in the Hsp90 ATPase cycle.

Siligardi G, Hu B, Panaretou B, Piper PW, Pearl LH, Prodromou C.

J Biol Chem. 2004 Dec 10;279(50):51989-98.

6.
7.

Stimulation of the weak ATPase activity of human hsp90 by a client protein.

McLaughlin SH, Smith HW, Jackson SE.

J Mol Biol. 2002 Jan 25;315(4):787-98.

PMID:
11812147
8.

N-terminal residues regulate the catalytic efficiency of the Hsp90 ATPase cycle.

Richter K, Reinstein J, Buchner J.

J Biol Chem. 2002 Nov 22;277(47):44905-10.

9.

Coordinated ATP hydrolysis by the Hsp90 dimer.

Richter K, Muschler P, Hainzl O, Buchner J.

J Biol Chem. 2001 Sep 7;276(36):33689-96.

11.

Binding of immunophilins to the 90 kDa heat shock protein (hsp90) via a tetratricopeptide repeat domain is a conserved protein interaction in plants.

Owens-Grillo JK, Stancato LF, Hoffmann K, Pratt WB, Krishna P.

Biochemistry. 1996 Dec 3;35(48):15249-55.

PMID:
8952474
12.

The importance of ATP binding and hydrolysis by hsp90 in formation and function of protein heterocomplexes.

Grenert JP, Johnson BD, Toft DO.

J Biol Chem. 1999 Jun 18;274(25):17525-33.

13.

Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex.

Ali MM, Roe SM, Vaughan CK, Meyer P, Panaretou B, Piper PW, Prodromou C, Pearl LH.

Nature. 2006 Apr 20;440(7087):1013-7.

PMID:
16625188
14.

Dissection of the contribution of individual domains to the ATPase mechanism of Hsp90.

Wegele H, Muschler P, Bunck M, Reinstein J, Buchner J.

J Biol Chem. 2003 Oct 10;278(41):39303-10.

15.

The molecular chaperone Hsp90 plays a role in the assembly and maintenance of the 26S proteasome.

Imai J, Maruya M, Yashiroda H, Yahara I, Tanaka K.

EMBO J. 2003 Jul 15;22(14):3557-67.

16.

Intrinsic inhibition of the Hsp90 ATPase activity.

Richter K, Moser S, Hagn F, Friedrich R, Hainzl O, Heller M, Schlee S, Kessler H, Reinstein J, Buchner J.

J Biol Chem. 2006 Apr 21;281(16):11301-11.

17.

The Co-chaperone Sba1 connects the ATPase reaction of Hsp90 to the progression of the chaperone cycle.

Richter K, Walter S, Buchner J.

J Mol Biol. 2004 Oct 1;342(5):1403-13.

PMID:
15364569
18.

Cofactor Tpr2 combines two TPR domains and a J domain to regulate the Hsp70/Hsp90 chaperone system.

Brychzy A, Rein T, Winklhofer KF, Hartl FU, Young JC, Obermann WM.

EMBO J. 2003 Jul 15;22(14):3613-23.

19.

Conserved conformational changes in the ATPase cycle of human Hsp90.

Richter K, Soroka J, Skalniak L, Leskovar A, Hessling M, Reinstein J, Buchner J.

J Biol Chem. 2008 Jun 27;283(26):17757-65. doi: 10.1074/jbc.M800540200.

20.

Independent ATPase activity of Hsp90 subunits creates a flexible assembly platform.

McLaughlin SH, Ventouras LA, Lobbezoo B, Jackson SE.

J Mol Biol. 2004 Nov 26;344(3):813-26.

PMID:
15533447
Items per page

Supplemental Content

Support Center