Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 79

1.

Chromatin interaction mechanism of transcriptional control in vivo.

Gribnau J, de Boer E, Trimborn T, Wijgerde M, Milot E, Grosveld F, Fraser P.

EMBO J. 1998 Oct 15;17(20):6020-7.

2.

The role of the -50 region of the human gamma-globin gene in switching.

Ristaldi MS, Drabek D, Gribnau J, Poddie D, Yannoutsous N, Cao A, Grosveld F, Imam AM.

EMBO J. 2001 Sep 17;20(18):5242-9.

3.

The effect of distance on long-range chromatin interactions.

Dillon N, Trimborn T, Strouboulis J, Fraser P, Grosveld F.

Mol Cell. 1997 Dec;1(1):131-9.

4.
5.

Nuclear localization and histone acetylation: a pathway for chromatin opening and transcriptional activation of the human beta-globin locus.

Schübeler D, Francastel C, Cimbora DM, Reik A, Martin DI, Groudine M.

Genes Dev. 2000 Apr 15;14(8):940-50.

6.
7.
8.

The murine beta-globin locus control region regulates the rate of transcription but not the hyperacetylation of histones at the active genes.

Schübeler D, Groudine M, Bender MA.

Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11432-7. Epub 2001 Sep 11.

9.

Flanking HS-62.5 and 3' HS1, and regions upstream of the LCR, are not required for beta-globin transcription.

Bender MA, Byron R, Ragoczy T, Telling A, Bulger M, Groudine M.

Blood. 2006 Aug 15;108(4):1395-401. Epub 2006 Apr 27.

10.

Beyond the locus control region: new light on beta-globin locus regulation.

Li XG, Liu DP, Liang CC.

Int J Biochem Cell Biol. 2001 Sep;33(9):914-23. Review.

PMID:
11461833
11.

Correct function of the locus control region may require passage through a nonerythroid cellular environment.

Vassilopoulos G, Navas PA, Skarpidi E, Peterson KR, Lowrey CH, Papayannopoulou T, Stamatoyannopoulos G.

Blood. 1999 Jan 15;93(2):703-12.

12.

Transcription complex stability and chromatin dynamics in vivo.

Wijgerde M, Grosveld F, Fraser P.

Nature. 1995 Sep 21;377(6546):209-13.

PMID:
7675106
13.

Multiple interactions between regulatory regions are required to stabilize an active chromatin hub.

Patrinos GP, de Krom M, de Boer E, Langeveld A, Imam AM, Strouboulis J, de Laat W, Grosveld FG.

Genes Dev. 2004 Jun 15;18(12):1495-509.

14.

Long-range chromatin regulatory interactions in vivo.

Carter D, Chakalova L, Osborne CS, Dai YF, Fraser P.

Nat Genet. 2002 Dec;32(4):623-6. Epub 2002 Nov 11.

PMID:
12426570
15.

Synergistic and additive properties of the beta-globin locus control region (LCR) revealed by 5'HS3 deletion mutations: implication for LCR chromatin architecture.

Fang X, Sun J, Xiang P, Yu M, Navas PA, Peterson KR, Stamatoyannopoulos G, Li Q.

Mol Cell Biol. 2005 Aug;25(16):7033-41.

16.

Factors binding a non-classical Cis-element prevent heterochromatin effects on locus control region activity.

Harrow F, Amuta JU, Hutchinson SR, Akwaa F, Ortiz BD.

J Biol Chem. 2004 Apr 23;279(17):17842-9. Epub 2004 Feb 14.

17.

Definition of transcriptional promoters in the human beta globin locus control region.

Routledge SJ, Proudfoot NJ.

J Mol Biol. 2002 Nov 1;323(4):601-11.

PMID:
12419253
18.

Beta-globin active chromatin Hub formation in differentiating erythroid cells and in p45 NF-E2 knock-out mice.

Kooren J, Palstra RJ, Klous P, Splinter E, von Lindern M, Grosveld F, de Laat W.

J Biol Chem. 2007 Jun 1;282(22):16544-52. Epub 2007 Apr 11.

19.

Human gamma-globin gene promoter element regulates human beta-globin gene developmental specificity.

Ryan TM, Sun CW, Ren J, Townes TM.

Nucleic Acids Res. 2000 Jul 15;28(14):2736-40.

20.

Activation of the beta-like globin genes in transgenic mice is dependent on the presence of the beta-locus control region.

Navas PA, Li Q, Peterson KR, Swank RA, Rohde A, Roy J, Stamatoyannopoulos G.

Hum Mol Genet. 2002 Apr 15;11(8):893-903.

PMID:
11971871

Supplemental Content

Support Center