Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 96

1.
2.

[The morphogenesis of Wulst neurons in the pied flycatcher under conditions of limited afferent inflow].

Korneeva EV, Shuleĭkina KV.

Zh Vyssh Nerv Deiat Im I P Pavlova. 1999 May-Jun;49(3):495-504. Russian.

PMID:
10420561
3.

[Visual afferentation deficit during diffuse photosensitivity period in nestlings affects morphogenesis in Wulst neurons].

Korneeva EV, Aleksandrov LI, Golubeva TB, Shuleĭkina KV.

Zh Vyssh Nerv Deiat Im I P Pavlova. 2000 May-Jun;50(3):518-26. Russian.

PMID:
10923390
4.

[Effects of binocular form deprivation on the properties of gamma-aminobutyric acid currents of rat visual cortical neurons].

Qin W, Yin ZQ, Wang SJ, Zhao YJ.

Zhonghua Yan Ke Za Zhi. 2005 Jan;41(1):37-40. Chinese.

PMID:
15774112
5.

[The role of visual afferentation in the development of early defense behavior of pied flycatcher nestlings].

Korneeva EV, Aleksandrov LI, Golubeva TB, Raevskiĭ VV.

Zh Vyssh Nerv Deiat Im I P Pavlova. 2005 May-Jun;55(3):353-9. Russian.

PMID:
16033236
6.

Visual recovery after monocular deprivation is driven by absolute, rather than relative, visually evoked activity levels.

Mitchell DE, Gingras G.

Curr Biol. 1998 Oct 22;8(21):1179-82. Erratum in: Curr Biol 1998 Dec 3;8(24):R897.

7.

[Wulst neurons in the youngs of pied flycatcher Ficedula hypoleuca at previsual stage of development].

Korneeva EV, Aleksandrov LI, Golubeva TB, Shuleĭkina KV.

Zh Evol Biokhim Fiziol. 2002 Nov-Dec;38(6):594-8. Russian. No abstract available.

PMID:
12625063
8.
9.

Homeostatic regulation of eye-specific responses in visual cortex during ocular dominance plasticity.

Mrsic-Flogel TD, Hofer SB, Ohki K, Reid RC, Bonhoeffer T, Hübener M.

Neuron. 2007 Jun 21;54(6):961-72.

10.
11.
12.

Norepinephrine levels in developing pigeon brain: effect of monocular deprivation on the Wulst noradrenergic system.

Bagnoli P, Barsellotti R, Pellegrini M, Alesci R.

Brain Res. 1983 Nov;312(2):243-50.

PMID:
6652516
13.

Crossmodal audio-visual interactions in the primary visual cortex of the visually deprived cat: a physiological and anatomical study.

Sanchez-Vives MV, Nowak LG, Descalzo VF, Garcia-Velasco JV, Gallego R, Berbel P.

Prog Brain Res. 2006;155:287-311.

PMID:
17027395
14.

Differential effects of neurotrophins on ocular dominance plasticity in developing and adult cat visual cortex.

Galuske RA, Kim DS, Castrén E, Singer W.

Eur J Neurosci. 2000 Sep;12(9):3315-30.

PMID:
10998115
15.

[Photo- and phonoreactivity of visual cortex neurons following light deprivation of rabbits during ontogeny].

Barsova ON.

Zh Vyssh Nerv Deiat Im I P Pavlova. 1980 May-Jun;30(3):582-7. Russian.

PMID:
7434933
16.

Correlated binocular activity guides recovery from monocular deprivation.

Kind PC, Mitchell DE, Ahmed B, Blakemore C, Bonhoeffer T, Sengpiel F.

Nature. 2002 Mar 28;416(6879):430-3.

PMID:
11919632
17.

The morphological changes of pyramidal and spiny stellate cells in the primary visual cortex of chronic morphine treated cats.

Hu F, Li G, Liang Z, Yang Y, Zhou Y.

Brain Res Bull. 2008 Sep 30;77(2-3):77-83. doi: 10.1016/j.brainresbull.2008.06.007. Epub 2008 Jul 16.

PMID:
18638530
18.

Stimulus for rapid ocular dominance plasticity in visual cortex.

Rittenhouse CD, Siegler BA, Voelker CC, Shouval HZ, Paradiso MA, Bear MF.

J Neurophysiol. 2006 May;95(5):2947-50. Epub 2006 Feb 15. Erratum in: J Neurophysiol. 2006 Aug;96(2):965. Voelker, Courtney A [corrected to Voelker, Courtney C].

19.
20.

Effect of monocular deprivation on binocular neurones in the owl's visual Wulst.

Pettigrew JD, Konishi M.

Nature. 1976 Dec 23-30;264(5588):753-4. No abstract available.

PMID:
1012314

Supplemental Content

Support Center