Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 107

1.
2.

Cysteine-mediated electron transfer in syntrophic acetate oxidation by cocultures of Geobacter sulfurreducens and Wolinella succinogenes.

Kaden J, S Galushko A, Schink B.

Arch Microbiol. 2002 Jul;178(1):53-8. Epub 2002 Apr 27.

PMID:
12070769
4.

Metabolic response of Geobacter sulfurreducens towards electron donor/acceptor variation.

Yang TH, Coppi MV, Lovley DR, Sun J.

Microb Cell Fact. 2010 Nov 22;9:90. doi: 10.1186/1475-2859-9-90.

5.

Acetate oxidation by syntrophic association between Geobacter sulfurreducens and a hydrogen-utilizing exoelectrogen.

Kimura Z, Okabe S.

ISME J. 2013 Aug;7(8):1472-82. doi: 10.1038/ismej.2013.40. Epub 2013 Mar 14.

6.

Interspecies electron transfer via hydrogen and formate rather than direct electrical connections in cocultures of Pelobacter carbinolicus and Geobacter sulfurreducens.

Rotaru AE, Shrestha PM, Liu F, Ueki T, Nevin K, Summers ZM, Lovley DR.

Appl Environ Microbiol. 2012 Nov;78(21):7645-51. doi: 10.1128/AEM.01946-12. Epub 2012 Aug 24.

7.

Syntrophic growth with direct interspecies electron transfer as the primary mechanism for energy exchange.

Shrestha PM, Rotaru AE, Aklujkar M, Liu F, Shrestha M, Summers ZM, Malvankar N, Flores DC, Lovley DR.

Environ Microbiol Rep. 2013 Dec;5(6):904-10. doi: 10.1111/1758-2229.12093. Epub 2013 Sep 12.

PMID:
24249299
8.

Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism.

Caccavo F Jr, Lonergan DJ, Lovley DR, Davis M, Stolz JF, McInerney MJ.

Appl Environ Microbiol. 1994 Oct;60(10):3752-9.

9.

Growth of Geobacter sulfurreducens under nutrient-limiting conditions in continuous culture.

Esteve-Núñez A, Rothermich M, Sharma M, Lovley D.

Environ Microbiol. 2005 May;7(5):641-8.

PMID:
15819846
10.

Electricity production by Geobacter sulfurreducens attached to electrodes.

Bond DR, Lovley DR.

Appl Environ Microbiol. 2003 Mar;69(3):1548-55.

11.

Syntrophic growth via quinone-mediated interspecies electron transfer.

Smith JA, Nevin KP, Lovley DR.

Front Microbiol. 2015 Feb 17;6:121. doi: 10.3389/fmicb.2015.00121. eCollection 2015.

12.

Fermentative toluene degradation in anaerobic defined syntrophic cocultures.

Meckenstock RU.

FEMS Microbiol Lett. 1999 Aug 1;177(1):67-73.

13.
14.

Geobacter sulfurreducens subsp. ethanolicus, subsp. nov., an ethanol-utilizing dissimilatory Fe(III)-reducing bacterium from a lotus field.

Viulu S, Nakamura K, Kojima A, Yoshiyasu Y, Saitou S, Takamizawa K.

J Gen Appl Microbiol. 2013;59(5):325-34.

16.

Expanding the Diet for DIET: Electron Donors Supporting Direct Interspecies Electron Transfer (DIET) in Defined Co-Cultures.

Wang LY, Nevin KP, Woodard TL, Mu BZ, Lovley DR.

Front Microbiol. 2016 Mar 1;7:236. doi: 10.3389/fmicb.2016.00236. eCollection 2016.

17.

Metabolic efficiency of Geobacter sulfurreducens growing on anodes with different redox potentials.

Bosch J, Lee KY, Hong SF, Harnisch F, Schröder U, Meckenstock RU.

Curr Microbiol. 2014 Jun;68(6):763-8. doi: 10.1007/s00284-014-0539-2. Epub 2014 Feb 20.

PMID:
24554342
19.

Characterization of metabolism in the Fe(III)-reducing organism Geobacter sulfurreducens by constraint-based modeling.

Mahadevan R, Bond DR, Butler JE, Esteve-Nuñez A, Coppi MV, Palsson BO, Schilling CH, Lovley DR.

Appl Environ Microbiol. 2006 Feb;72(2):1558-68.

20.

Proteome of Geobacter sulfurreducens grown with Fe(III) oxide or Fe(III) citrate as the electron acceptor.

Ding YH, Hixson KK, Aklujkar MA, Lipton MS, Smith RD, Lovley DR, Mester T.

Biochim Biophys Acta. 2008 Dec;1784(12):1935-41. doi: 10.1016/j.bbapap.2008.06.011. Epub 2008 Jun 25.

PMID:
18638577

Supplemental Content

Support Center