Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 140

1.

Interval estimation for the difference between independent proportions: comparison of eleven methods.

Newcombe RG.

Stat Med. 1998 Apr 30;17(8):873-90. Erratum in: Stat Med 1999 May 30;18(10):1293.

PMID:
9595617
2.
3.

Confidence interval construction for proportion difference in small-sample paired studies.

Tang ML, Tang NS, Chan IS.

Stat Med. 2005 Dec 15;24(23):3565-79.

PMID:
16261646
4.

Confidence intervals for a ratio of two independent binomial proportions.

Price RM, Bonett DG.

Stat Med. 2008 Nov 20;27(26):5497-508. doi: 10.1002/sim.3376.

PMID:
18781560
5.

Confidence intervals for weighted proportions.

Waller JL, Addy CL, Jackson KL, Garrison CZ.

Stat Med. 1994 May 30;13(10):1071-82.

PMID:
8073202
6.
7.
8.

Confidence intervals for a ratio of binomial proportions based on paired data.

Bonett DG, Price RM.

Stat Med. 2006 Sep 15;25(17):3039-47.

PMID:
16345058
9.
11.
12.
13.

Confidence intervals for the binomial parameter: some new considerations.

Reiczigel J.

Stat Med. 2003 Feb 28;22(4):611-21.

PMID:
12590417
14.

Confidence intervals for the difference between independent binomial proportions: comparison using a graphical approach and moving averages.

Laud PJ, Dane A.

Pharm Stat. 2014 Sep-Oct;13(5):294-308. doi: 10.1002/pst.1631. Epub 2014 Aug 27.

PMID:
25163425
15.
16.
18.

Approximate simultaneous confidence intervals for multiple contrasts of binomial proportions.

Schaarschmidt F, Sill M, Hothorn LA.

Biom J. 2008 Oct;50(5):782-92. doi: 10.1002/bimj.200710465.

PMID:
18932137
19.

Confidence intervals based on some weighting functions for the difference of two binomial proportions.

Maruo K, Kawai N.

Stat Med. 2014 Jun 15;33(13):2288-96. doi: 10.1002/sim.6147. Epub 2014 Mar 19.

PMID:
24644149
20.

Analysis of epidemiologic case-base studies for binary data.

Nurminen M.

Stat Med. 1989 Oct;8(10):1241-54.

PMID:
2814072

Supplemental Content

Support Center