Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Transgene expression in Xenopus rods.

Knox BE, Schlueter C, Sanger BM, Green CB, Besharse JC.

FEBS Lett. 1998 Feb 20;423(2):117-21.

2.

Disruption of kinesin II function using a dominant negative-acting transgene in Xenopus laevis rods results in photoreceptor degeneration.

Lin-Jones J, Parker E, Wu M, Knox BE, Burnside B.

Invest Ophthalmol Vis Sci. 2003 Aug;44(8):3614-21.

PMID:
12882815
3.

Transgenic expression of a GFP-rhodopsin COOH-terminal fusion protein in zebrafish rod photoreceptors.

Perkins BD, Kainz PM, O'Malley DM, Dowling JE.

Vis Neurosci. 2002 Jul-Aug;19(4):257R-264R.

PMID:
12511087
4.

Transgenic expression of a GFP-rhodopsin COOH-terminal fusion protein in zebrafish rod photoreceptors.

Perkins BD, Kainz PM, O'Malley DM, Dowling JE.

Vis Neurosci. 2002 May-Jun;19(3):257-64. Corrected and republished in: Vis Neurosci. 2002 Jul-Aug;19(4):257R-264R.

PMID:
12392175
5.
6.

The regulation of retina specific expression of rhodopsin gene in vertebrates.

Zhang T, Tan YH, Fu J, Lui D, Ning Y, Jirik FR, Brenner S, Venkatesh B.

Gene. 2003 Aug 14;313:189-200.

PMID:
12957390
7.
8.
9.

Pineal expression-promoting element (PIPE), a cis-acting element, directs pineal-specific gene expression in zebrafish.

Asaoka Y, Mano H, Kojima D, Fukada Y.

Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15456-61. Epub 2002 Nov 18.

10.
11.

Human blue-opsin promoter preferentially targets reporter gene expression to rat s-cone photoreceptors.

Glushakova LG, Timmers AM, Pang J, Teusner JT, Hauswirth WW.

Invest Ophthalmol Vis Sci. 2006 Aug;47(8):3505-13.

PMID:
16877422
12.

Xenopus laevis P23H rhodopsin transgene causes rod photoreceptor degeneration that is more severe in the ventral retina and is modulated by light.

Zhang R, Oglesby E, Marsh-Armstrong N.

Exp Eye Res. 2008 Apr;86(4):612-21. doi: 10.1016/j.exer.2008.01.005. Epub 2008 Jan 12.

13.
14.

Cone survival despite rod degeneration in XOPS-mCFP transgenic zebrafish.

Morris AC, Schroeter EH, Bilotta J, Wong RO, Fadool JM.

Invest Ophthalmol Vis Sci. 2005 Dec;46(12):4762-71.

15.

Deciphering the contribution of known cis-elements in the mouse cone arrestin gene to its cone-specific expression.

Pickrell SW, Zhu X, Wang X, Craft CM.

Invest Ophthalmol Vis Sci. 2004 Nov;45(11):3877-84.

PMID:
15505032
16.

Xenopus rhodopsin promoter. Identification of immediate upstream sequences necessary for high level, rod-specific transcription.

Mani SS, Batni S, Whitaker L, Chen S, Engbretson G, Knox BE.

J Biol Chem. 2001 Sep 28;276(39):36557-65. Epub 2001 May 1.

17.

Rhodopsin promoter-EGFP fusion transgene expression in photoreceptor neurons of retina and pineal complex in mice.

Ichsan AM, Kato I, Yoshida T, Takasawa K, Hayasaka S, Hiraga K.

Neurosci Lett. 2005 May 6;379(2):138-43. Epub 2005 Jan 22.

PMID:
15823431
18.

Direct modulation of rod photoreceptor responsiveness through a Mel(1c) melatonin receptor in transgenic Xenopus laevis retina.

Wiechmann AF, Vrieze MJ, Dighe R, Hu Y.

Invest Ophthalmol Vis Sci. 2003 Oct;44(10):4522-31.

PMID:
14507901
19.
20.

Does recombinant adeno-associated virus-vectored proximal region of mouse rhodopsin promoter support only rod-type specific expression in vivo?

Glushakova LG, Timmers AM, Issa TM, Cortez NG, Pang J, Teusner JT, Hauswirth WW.

Mol Vis. 2006 Apr 7;12:298-309.

Supplemental Content

Support Center