Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 107

1.

Genetic engineering of parthenocarpic plants.

Rotino GL, Perri E, Zottini M, Sommer H, Spena A.

Nat Biotechnol. 1997 Dec;15(13):1398-401.

PMID:
9415894
2.

Genetically modified parthenocarpic eggplants: improved fruit productivity under both greenhouse and open field cultivation.

Acciarri N, Restaino F, Vitelli G, Perrone D, Zottini M, Pandolfini T, Spena A, Rotino G.

BMC Biotechnol. 2002 Apr 4;2:4.

3.
4.

Optimisation of transgene action at the post-transcriptional level: high quality parthenocarpic fruits in industrial tomatoes.

Pandolfini T, Rotino GL, Camerini S, Defez R, Spena A.

BMC Biotechnol. 2002;2:1. Epub 2002 Jan 11.

5.

The DefH9-iaaM-containing construct efficiently induces parthenocarpy in cucumber.

Yin Z, Malinowski R, Ziółkowska A, Sommer H, Plcader W, Malepszy S.

Cell Mol Biol Lett. 2006;11(2):279-90.

PMID:
16847572
6.

Open field trial of genetically modified parthenocarpic tomato: seedlessness and fruit quality.

Rotino GL, Acciarri N, Sabatini E, Mennella G, Lo Scalzo R, Maestrelli A, Molesini B, Pandolfini T, Scalzo J, Mezzetti B, Spena A.

BMC Biotechnol. 2005 Dec 21;5:32.

7.

Assessment of the utility of the tomato fruit-specific E8 promoter for driving vaccine antigen expression.

He ZM, Jiang XL, Qi Y, Luo DQ.

Genetica. 2008 Jun;133(2):207-14. Epub 2007 Sep 5.

PMID:
17805977
8.

Seedless hopes bode well for winter vegetables.

Tomes DT.

Nat Biotechnol. 1997 Dec;15(13):1344-5. No abstract available.

PMID:
9415882
9.

Early anther ablation triggers parthenocarpic fruit development in tomato.

Medina M, Roque E, Pineda B, Cañas L, Rodriguez-Concepción M, Beltrán JP, Gómez-Mena C.

Plant Biotechnol J. 2013 Aug;11(6):770-9. doi: 10.1111/pbi.12069. Epub 2013 Apr 15.

10.
12.

Ethylene formation and phenotypic analysis of transgenic tobacco plants expressing a bacterial ethylene-forming enzyme.

Araki S, Matsuoka M, Tanaka M, Ogawa T.

Plant Cell Physiol. 2000 Mar;41(3):327-34.

PMID:
10805596
13.

The codA transgene for glycinebetaine synthesis increases the size of flowers and fruits in tomato.

Park EJ, Jeknić Z, Chen TH, Murata N.

Plant Biotechnol J. 2007 May;5(3):422-30. Epub 2007 Mar 15. Erratum in: Plant Biotechnol J. 2007 Sep;5(5):675.. Corrected Jekncić to Jeknić..

14.

Gene regulation in parthenocarpic tomato fruit.

Martinelli F, Uratsu SL, Reagan RL, Chen Y, Tricoli D, Fiehn O, Rocke DM, Gasser CS, Dandekar AM.

J Exp Bot. 2009;60(13):3873-90. doi: 10.1093/jxb/erp227. Epub 2009 Aug 21.

16.

[Fruit set variation associated with apozygotic reproduction in sugar beet (Beta vulgaris l.)].

Iudanova SS, Maletskiĭ SI, Pozniak SI, Maletskaia EI.

Genetika. 2011 May;47(5):633-42. Russian.

PMID:
21786669
17.

[Phenotypic changes in transgenic tobacco plants with an antisense form of the hmg1 gene].

Poroĭko VA, Rukavtsova EB, Orlova IV, Bur'ianov IaI.

Genetika. 2000 Sep;36(9):1200-5. Russian.

PMID:
11042806
18.

The Solanum lycopersicum auxin response factor 7 (SlARF7) regulates auxin signaling during tomato fruit set and development.

de Jong M, Wolters-Arts M, Feron R, Mariani C, Vriezen WH.

Plant J. 2009 Jan;57(1):160-70. doi: 10.1111/j.1365-313X.2008.03671.x. Epub 2008 Oct 4.

19.

Expression pattern of the pre-prothaumatin II gene under the control of the CaMV 35S promoter in transgenic cucumber (Cucumis sativus L.) flower buds and fruits.

Szwacka M, Siedlecka E, Zawirska-Wojtasiak R, Wiśniewski Ł, Malepszy S.

J Appl Genet. 2009;50(1):9-16. doi: 10.1007/BF03195646.

PMID:
19193977

Supplemental Content

Support Center