Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 223

1.

Phosphorylation of Ser465 and Ser467 in the C terminus of Smad2 mediates interaction with Smad4 and is required for transforming growth factor-beta signaling.

Souchelnytskyi S, Tamaki K, Engström U, Wernstedt C, ten Dijke P, Heldin CH.

J Biol Chem. 1997 Oct 31;272(44):28107-15.

2.

TbetaRI phosphorylation of Smad2 on Ser465 and Ser467 is required for Smad2-Smad4 complex formation and signaling.

Abdollah S, Macías-Silva M, Tsukazaki T, Hayashi H, Attisano L, Wrana JL.

J Biol Chem. 1997 Oct 31;272(44):27678-85.

3.

TGF-beta receptor-mediated signalling through Smad2, Smad3 and Smad4.

Nakao A, Imamura T, Souchelnytskyi S, Kawabata M, Ishisaki A, Oeda E, Tamaki K, Hanai J, Heldin CH, Miyazono K, ten Dijke P.

EMBO J. 1997 Sep 1;16(17):5353-62.

4.
5.

Nuclear targeting of transforming growth factor-beta-activated Smad complexes.

Chen HB, Rud JG, Lin K, Xu L.

J Biol Chem. 2005 Jun 3;280(22):21329-36. Epub 2005 Mar 30.

6.

The oncoprotein Ski acts as an antagonist of transforming growth factor-beta signaling by suppressing Smad2 phosphorylation.

Prunier C, Pessah M, Ferrand N, Seo SR, Howe P, Atfi A.

J Biol Chem. 2003 Jul 11;278(28):26249-57. Epub 2003 May 5.

7.
9.

Semisynthesis of phosphovariants of Smad2 reveals a substrate preference of the activated T beta RI kinase.

Ottesen JJ, Huse M, Sekedat MD, Muir TW.

Biochemistry. 2004 May 18;43(19):5698-706.

PMID:
15134444
10.

Transforming growth factor-beta signaling is differentially inhibited by Smad2D450E and Smad3D407E.

Kondo M, Suzuki H, Takehara K, Miyazono K, Kato M.

Cancer Sci. 2004 Jan;95(1):12-7.

11.

The tumor suppressor Smad4/DPC 4 as a central mediator of Smad function.

Zhang Y, Musci T, Derynck R.

Curr Biol. 1997 Apr 1;7(4):270-6.

12.
13.

Transforming growth factor beta-independent shuttling of Smad4 between the cytoplasm and nucleus.

Pierreux CE, Nicolás FJ, Hill CS.

Mol Cell Biol. 2000 Dec;20(23):9041-54.

14.

Hoxa-9 represses transforming growth factor-beta-induced osteopontin gene transcription.

Shi X, Bai S, Li L, Cao X.

J Biol Chem. 2001 Jan 5;276(1):850-5.

15.

p38 MAPK mediates fibrogenic signal through Smad3 phosphorylation in rat myofibroblasts.

Furukawa F, Matsuzaki K, Mori S, Tahashi Y, Yoshida K, Sugano Y, Yamagata H, Matsushita M, Seki T, Inagaki Y, Nishizawa M, Fujisawa J, Inoue K.

Hepatology. 2003 Oct;38(4):879-89.

PMID:
14512875
16.

The TGF-beta family mediator Smad1 is phosphorylated directly and activated functionally by the BMP receptor kinase.

Kretzschmar M, Liu F, Hata A, Doody J, Massagué J.

Genes Dev. 1997 Apr 15;11(8):984-95.

17.

Interaction between Smad anchor for receptor activation and Smad3 is not essential for TGF-beta/Smad3-mediated signaling.

Goto D, Nakajima H, Mori Y, Kurasawa K, Kitamura N, Iwamoto I.

Biochem Biophys Res Commun. 2001 Mar;281(5):1100-5.

PMID:
11243848
18.

Identification of Smad2, a human Mad-related protein in the transforming growth factor beta signaling pathway.

Nakao A, Röijer E, Imamura T, Souchelnytskyi S, Stenman G, Heldin CH, ten Dijke P.

J Biol Chem. 1997 Jan 31;272(5):2896-900.

19.

Distortion of autocrine transforming growth factor beta signal accelerates malignant potential by enhancing cell growth as well as PAI-1 and VEGF production in human hepatocellular carcinoma cells.

Sugano Y, Matsuzaki K, Tahashi Y, Furukawa F, Mori S, Yamagata H, Yoshida K, Matsushita M, Nishizawa M, Fujisawa J, Inoue K.

Oncogene. 2003 Apr 17;22(15):2309-21.

PMID:
12700666
20.

TGF-beta-induced nuclear localization of Smad2 and Smad3 in Smad4 null cancer cell lines.

Fink SP, Mikkola D, Willson JK, Markowitz S.

Oncogene. 2003 Mar 6;22(9):1317-23.

PMID:
12618756

Supplemental Content

Support Center