Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 167

1.

Crystal structure of a small G protein in complex with the GTPase-activating protein rhoGAP.

Rittinger K, Walker PA, Eccleston JF, Nurmahomed K, Owen D, Laue E, Gamblin SJ, Smerdon SJ.

Nature. 1997 Aug 14;388(6643):693-7.

PMID:
9262406
2.

Structure at 1.65 A of RhoA and its GTPase-activating protein in complex with a transition-state analogue.

Rittinger K, Walker PA, Eccleston JF, Smerdon SJ, Gamblin SJ.

Nature. 1997 Oct 16;389(6652):758-62.

PMID:
9338791
3.

The structure of the GTPase-activating domain from p50rhoGAP.

Barrett T, Xiao B, Dodson EJ, Dodson G, Ludbrook SB, Nurmahomed K, Gamblin SJ, Musacchio A, Smerdon SJ, Eccleston JF.

Nature. 1997 Jan 30;385(6615):458-61.

PMID:
9009196
5.

Structures of Cdc42 bound to the active and catalytically compromised forms of Cdc42GAP.

Nassar N, Hoffman GR, Manor D, Clardy JC, Cerione RA.

Nat Struct Biol. 1998 Dec;5(12):1047-52.

PMID:
9846874
6.

Investigation of the GTP-binding/GTPase cycle of Cdc42Hs using extrinsic reporter group fluorescence.

Nomanbhoy TK, Leonard DA, Manor D, Cerione RA.

Biochemistry. 1996 Apr 9;35(14):4602-8.

PMID:
8605211
7.

A built-in arginine finger triggers the self-stimulatory GTPase-activating activity of rho family GTPases.

Zhang B, Zhang Y, Collins CC, Johnson DI, Zheng Y.

J Biol Chem. 1999 Jan 29;274(5):2609-12.

8.

GTPase-activating proteins and their complexes.

Gamblin SJ, Smerdon SJ.

Curr Opin Struct Biol. 1998 Apr;8(2):195-201. Review.

PMID:
9631293
9.

Identification of the human platelet GTPase activating protein for the CDC42Hs protein.

Hart MJ, Shinjo K, Hall A, Evans T, Cerione RA.

J Biol Chem. 1991 Nov 5;266(31):20840-8.

10.

Biochemical comparisons of the Saccharomyces cerevisiae Bem2 and Bem3 proteins. Delineation of a limit Cdc42 GTPase-activating protein domain.

Zheng Y, Hart MJ, Shinjo K, Evans T, Bender A, Cerione RA.

J Biol Chem. 1993 Nov 25;268(33):24629-34.

11.

Structural basis for the unique biological function of small GTPase RHEB.

Yu Y, Li S, Xu X, Li Y, Guan K, Arnold E, Ding J.

J Biol Chem. 2005 Apr 29;280(17):17093-100. Epub 2005 Feb 23.

13.
14.

Fluoride activation of the Rho family GTP-binding protein Cdc42Hs.

Hoffman GR, Nassar N, Oswald RE, Cerione RA.

J Biol Chem. 1998 Feb 20;273(8):4392-9.

15.

Structure of Cdc42 in complex with the GTPase-binding domain of the 'Wiskott-Aldrich syndrome' protein.

Abdul-Manan N, Aghazadeh B, Liu GA, Majumdar A, Ouerfelli O, Siminovitch KA, Rosen MK.

Nature. 1999 May 27;399(6734):379-83.

PMID:
10360578
16.

Identification of the binding surface on Cdc42Hs for p21-activated kinase.

Guo W, Sutcliffe MJ, Cerione RA, Oswald RE.

Biochemistry. 1998 Oct 6;37(40):14030-7.

PMID:
9760238
17.

G proteins, effectors and GAPs: structure and mechanism.

Sprang SR.

Curr Opin Struct Biol. 1997 Dec;7(6):849-56. Review.

PMID:
9434906
18.

Negative regulation of Rho family GTPases Cdc42 and Rac2 by homodimer formation.

Zhang B, Zheng Y.

J Biol Chem. 1998 Oct 2;273(40):25728-33.

19.

Biochemical studies of the mechanism of action of the Cdc42-GTPase-activating protein.

Leonard DA, Lin R, Cerione RA, Manor D.

J Biol Chem. 1998 Jun 26;273(26):16210-5.

20.

Crystal structure of the GTPase-activating domain of human p120GAP and implications for the interaction with Ras.

Scheffzek K, Lautwein A, Kabsch W, Ahmadian MR, Wittinghofer A.

Nature. 1996 Dec 12;384(6609):591-6.

PMID:
8955277

Supplemental Content

Support Center