Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 96

1.

Proton pumping of mitochondrial complex I: differential activation by analogs of ubiquinone.

Helfenbaum L, Ngo A, Ghelli A, Linnane AW, Degli Esposti M.

J Bioenerg Biomembr. 1997 Feb;29(1):71-80.

PMID:
9067804
2.

The interaction of Q analogs, particularly hydroxydecyl benzoquinone (idebenone), with the respiratory complexes of heart mitochondria.

Esposti MD, Ngo A, Ghelli A, Benelli B, Carelli V, McLennan H, Linnane AW.

Arch Biochem Biophys. 1996 Jun 15;330(2):395-400.

PMID:
8660670
3.

Steady-state kinetics of the reduction of coenzyme Q analogs by complex I (NADH:ubiquinone oxidoreductase) in bovine heart mitochondria and submitochondrial particles.

Fato R, Estornell E, Di Bernardo S, Pallotti F, Parenti Castelli G, Lenaz G.

Biochemistry. 1996 Feb 27;35(8):2705-16.

PMID:
8611577
4.

The specificity of mitochondrial complex I for ubiquinones.

Degli Esposti M, Ngo A, McMullen GL, Ghelli A, Sparla F, Benelli B, Ratta M, Linnane AW.

Biochem J. 1996 Jan 1;313 ( Pt 1):327-34.

5.

Characterization of the ubiquinone reduction site of mitochondrial complex I using bulky synthetic ubiquinones.

Ohshima M, Miyoshi H, Sakamoto K, Takegami K, Iwata J, Kuwabara K, Iwamura H, Yagi T.

Biochemistry. 1998 May 5;37(18):6436-45.

PMID:
9572861
6.
7.

The proton-pumping respiratory complex I of bacteria and mitochondria and its homologue in chloroplasts.

Friedrich T, Steinmüller K, Weiss H.

FEBS Lett. 1995 Jun 26;367(2):107-11. Review.

8.

Modular evolution of the respiratory NADH:ubiquinone oxidoreductase and the origin of its modules.

Friedrich T, Weiss H.

J Theor Biol. 1997 Aug 21;187(4):529-40.

PMID:
9299297
9.

Structure and function of mitochondrial complex I.

Wirth C, Brandt U, Hunte C, Zickermann V.

Biochim Biophys Acta. 2016 Jul;1857(7):902-14. doi: 10.1016/j.bbabio.2016.02.013. Epub 2016 Feb 24. Review.

11.

Saturation kinetics of coenzyme Q in NADH oxidation: rate enhancement by incorporation of excess quinone.

Fato R, Bernardo SD, Estornell E, Parentic Castelli G, Lenaz G.

Mol Aspects Med. 1997;18 Suppl:S269-73.

PMID:
9266535
12.

Kinetics of the mitochondrial NADH-ubiquinone oxidoreductase interaction with hexammineruthenium(III).

Sled VD, Vinogradov AD.

Biochim Biophys Acta. 1993 Mar 1;1141(2-3):262-8.

PMID:
8443212
13.

[Participation of the quinone acceptor in the transition of complex I from an inactive to active state].

Maklashina EO, Vinogradov AD.

Biokhimiia. 1994 Nov;59(11):1638-45. Russian.

PMID:
7873673
15.

NAD(P)H-ubiquinone oxidoreductases in plant mitochondria.

Møller IM, Rasmusson AG, Fredlund KM.

J Bioenerg Biomembr. 1993 Aug;25(4):377-84. Review.

PMID:
8226719
16.

Catalytic properties of mitochondrial NADH-ubiquinone reductase (Complex I).

Vinogradov AD, Gavrikova EV, Grivennikova VG, Zharova TV, Zakharova NV.

Biochemistry (Mosc). 1999 Feb;64(2):136-52. Review.

PMID:
10187904
17.

Slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase.

Kotlyar AB, Vinogradov AD.

Biochim Biophys Acta. 1990 Aug 30;1019(2):151-8. Erratum in: Biochim Biophys Acta 1990 Oct 24;1020(1):113.

PMID:
2119805
18.

From NADH to ubiquinone in Neurospora mitochondria.

Videira A, Duarte M.

Biochim Biophys Acta. 2002 Sep 10;1555(1-3):187-91. Review.

19.

Pro-oxidant mitochondrial matrix-targeted ubiquinone MitoQ10 acts as anti-oxidant at retarded electron transport or proton pumping within Complex I.

Plecitá-Hlavatá L, Jezek J, Jezek P.

Int J Biochem Cell Biol. 2009 Aug-Sep;41(8-9):1697-707. doi: 10.1016/j.biocel.2009.02.015. Epub 2009 Mar 3.

PMID:
19433311
20.

Matrix NADH dehydrogenases of plant mitochondria and sites of quinone reduction by complex I.

Menz RI, Griffith M, Day DA, Wiskich JT.

Eur J Biochem. 1992 Sep 1;208(2):481-5.

Supplemental Content

Support Center