Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 67

1.
2.

Similar target site selection occurs in integration of plant and mammalian retroposons.

Tatout C, Lavie L, Deragon JM.

J Mol Evol. 1998 Oct;47(4):463-70.

PMID:
9767691
4.

Transposable elements: how non-LTR retrotransposons do it.

Finnegan DJ.

Curr Biol. 1997 Apr 1;7(4):R245-8. Review.

5.

Integration of retroposable elements in mammals: selection of target sites.

Jurka J, Klonowski P.

J Mol Evol. 1996 Dec;43(6):685-9.

PMID:
8995066
6.
8.

Efficiency of incision of an AP site within clustered DNA damage by the major human AP endonuclease.

David-Cordonnier MH, Cunniffe SM, Hickson ID, O'Neill P.

Biochemistry. 2002 Jan 15;41(2):634-42.

PMID:
11781104
9.
11.

Mammalian retroposons integrate at kinkable DNA sites.

Jurka J, Klonowski P, Trifonov EN.

J Biomol Struct Dyn. 1998 Feb;15(4):717-21.

PMID:
9514248
12.
13.
14.

An in vivo assay for the reverse transcriptase of human retrotransposon L1 in Saccharomyces cerevisiae.

Dombroski BA, Feng Q, Mathias SL, Sassaman DM, Scott AF, Kazazian HH Jr, Boeke JD.

Mol Cell Biol. 1994 Jul;14(7):4485-92.

15.
16.
18.

In vitro repair of synthetic ionizing radiation-induced multiply damaged DNA sites.

Harrison L, Hatahet Z, Wallace SS.

J Mol Biol. 1999 Jul 16;290(3):667-84.

PMID:
10395822
19.

End-to-end template jumping by the reverse transcriptase encoded by the R2 retrotransposon.

Bibillo A, Eickbush TH.

J Biol Chem. 2004 Apr 9;279(15):14945-53. Epub 2004 Jan 28.

Supplemental Content

Support Center