Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 118

1.

Cellulose-binding domains. Versatile affinity tags for inexpensive large-scale purification, concentration, and immobilization of fusion proteins.

Tomme P, Gilkes NR, Guarna MM, Haynes CA, Hasenwinkle D, Jervis E, Johnson P, McIntosh L, Warren RA, Kilburn DG.

Ann N Y Acad Sci. 1996 Oct 12;799:418-24. No abstract available.

PMID:
8958104
2.

Large scale production of recombinant antibodies by utilizing cellulose-binding domains.

Benhar I, Berdichevsky Y.

Methods Mol Biol. 2003;207:443-54. No abstract available.

PMID:
12412491
3.

Purification of a fusion protein using the family VI cellulose-binding domain of Clostridium stercorarium XynA.

Sakka K, Karita S, Kimura T, Ohmiya K.

Ann N Y Acad Sci. 1998 Dec 13;864:485-8. No abstract available.

PMID:
9928129
4.

A family 2a carbohydrate-binding module suitable as an affinity tag for proteins produced in Pichia pastoris.

Boraston AB, McLean BW, Guarna MM, Amandaron-Akow E, Kilburn DG.

Protein Expr Purif. 2001 Apr;21(3):417-23.

PMID:
11281716
5.

An internal cellulose-binding domain mediates adsorption of an engineered bifunctional xylanase/cellulase.

Tomme P, Gilkes NR, Miller RC Jr, Warren AJ, Kilburn DG.

Protein Eng. 1994 Jan;7(1):117-23.

PMID:
8140088
6.

Improved immobilization of fusion proteins via cellulose-binding domains.

Linder M, Nevanen T, Söderholm L, Bengs O, Teeri TT.

Biotechnol Bioeng. 1998 Dec 5;60(5):642-7.

PMID:
10099473
8.

Evidence for synergy between family 2b carbohydrate binding modules in Cellulomonas fimi xylanase 11A.

Bolam DN, Xie H, White P, Simpson PJ, Hancock SM, Williamson MP, Gilbert HJ.

Biochemistry. 2001 Feb 27;40(8):2468-77.

PMID:
11327868
9.

Structure of cellulases and their applications.

Ohmiya K, Sakka K, Karita S, Kimura T.

Biotechnol Genet Eng Rev. 1997;14:365-414. Review. No abstract available.

PMID:
9188160
10.

Assembling a novel bifunctional cellulase-xylanase from Thermotoga maritima by end-to-end fusion.

Hong SY, Lee JS, Cho KM, Math RK, Kim YH, Hong SJ, Cho YU, Kim H, Yun HD.

Biotechnol Lett. 2006 Nov;28(22):1857-62. Epub 2006 Sep 19.

PMID:
16988785
13.

Structure and function analysis of Pseudomonas plant cell wall hydrolases.

Hazlewood GP, Gilbert HJ.

Prog Nucleic Acid Res Mol Biol. 1998;61:211-41. Review.

PMID:
9752722
14.

Do cellulose binding domains increase substrate accessibility?

Esteghlalian AR, Srivastava V, Gilkes NR, Kilburn DG, Warren RA, Saddle JN.

Appl Biochem Biotechnol. 2001 Spring;91-93:575-92.

PMID:
11963886
15.

Cellulose hydrolysis by bacteria and fungi.

Tomme P, Warren RA, Gilkes NR.

Adv Microb Physiol. 1995;37:1-81. Review. No abstract available.

PMID:
8540419
16.

Pseudomonas cellulose-binding domains mediate their effects by increasing enzyme substrate proximity.

Bolam DN, Ciruela A, McQueen-Mason S, Simpson P, Williamson MP, Rixon JE, Boraston A, Hazlewood GP, Gilbert HJ.

Biochem J. 1998 May 1;331 ( Pt 3):775-81.

17.

Solution structure, backbone dynamics and chitin binding of the anti-fungal protein from Streptomyces tendae TU901.

Campos-Olivas R, Hörr I, Bormann C, Jung G, Gronenborn AM.

J Mol Biol. 2001 May 11;308(4):765-82.

PMID:
11350173
19.
20.

Structure and mechanism of endo/exocellulase E4 from Thermomonospora fusca.

Sakon J, Irwin D, Wilson DB, Karplus PA.

Nat Struct Biol. 1997 Oct;4(10):810-8.

PMID:
9334746
Items per page

Supplemental Content

Write to the Help Desk