Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 67

1.

Growth factors as potential drugs for the sensory epithelia of the ear.

Corwin JT, Warchol ME, Saffer LD, Finley JE, Gu R, Lamber PR.

Ciba Found Symp. 1996;196:167-82; discussion 182-7. Review.

PMID:
8866134
2.

Growth factor regulation of the cell cycle in developing and mature inner ear sensory epithelia.

Oesterle EC, Hume CR.

J Neurocytol. 1999 Oct-Nov;28(10-11):877-87. Review.

PMID:
10900091
4.

Characterization of leukocyte subtypes in chicken inner ear sensory epithelia.

O'Halloran EK, Oesterle EC.

J Comp Neurol. 2004 Jul 26;475(3):340-60.

PMID:
15221950
5.

Basic fibroblast growth factor inhibits cell proliferation in cultured avian inner ear sensory epithelia.

Oesterle EC, Bhave SA, Coltrera MD.

J Comp Neurol. 2000 Aug 21;424(2):307-26.

PMID:
10906705
6.

Regenerative proliferation in inner ear sensory epithelia from adult guinea pigs and humans.

Warchol ME, Lambert PR, Goldstein BJ, Forge A, Corwin JT.

Science. 1993 Mar 12;259(5101):1619-22.

PMID:
8456285
7.

BMP4 signaling is involved in the generation of inner ear sensory epithelia.

Li H, Corrales CE, Wang Z, Zhao Y, Wang Y, Liu H, Heller S.

BMC Dev Biol. 2005 Aug 17;5:16.

8.

The supporting-cell antigen: a receptor-like protein tyrosine phosphatase expressed in the sensory epithelia of the avian inner ear.

Kruger RP, Goodyear RJ, Legan PK, Warchol ME, Raphael Y, Cotanche DA, Richardson GP.

J Neurosci. 1999 Jun 15;19(12):4815-27.

9.

Proliferative responses to growth factors decline rapidly during postnatal maturation of mammalian hair cell epithelia.

Gu R, Montcouquiol M, Marchionni M, Corwin JT.

Eur J Neurosci. 2007 Mar;25(5):1363-72.

PMID:
17425563
10.

Gene expression differences in quiescent versus regenerating hair cells of avian sensory epithelia: implications for human hearing and balance disorders.

Hawkins RD, Bashiardes S, Helms CA, Hu L, Saccone NL, Warchol ME, Lovett M.

Hum Mol Genet. 2003 Jun 1;12(11):1261-72.

PMID:
12761041
11.

Morphology and cell type heterogeneities of the inner ear epithelia in adult and juvenile zebrafish (Danio rerio).

Bang PI, Sewell WF, Malicki JJ.

J Comp Neurol. 2001 Sep 17;438(2):173-90.

PMID:
11536187
12.

Prox1 interacts with Atoh1 and Gfi1, and regulates cellular differentiation in the inner ear sensory epithelia.

Kirjavainen A, Sulg M, Heyd F, Alitalo K, Ylä-Herttuala S, Möröy T, Petrova TV, Pirvola U.

Dev Biol. 2008 Oct 1;322(1):33-45. doi: 10.1016/j.ydbio.2008.07.004.

13.

Class III beta-tubulin expression in sensory and nonsensory regions of the developing avian inner ear.

Molea D, Stone JS, Rubel EW.

J Comp Neurol. 1999 Apr 5;406(2):183-98.

PMID:
10096605
14.

Differential roles of fibroblast growth factor-2 during development and maintenance of auditory sensory epithelia.

Carnicero E, Zelarayan LC, Rüttiger L, Knipper M, Alvarez Y, Alonso MT, Schimmang T.

J Neurosci Res. 2004 Sep 15;77(6):787-97.

PMID:
15334598
15.
16.

In vivo and in vitro localization of brain-derived neurotrophic factor, fibroblast growth factor-2 and their receptors in the bullfrog vestibular end organs.

Cristobal R, Popper P, Lopez I, Micevych P, De Vellis J, Honrubia V.

Brain Res Mol Brain Res. 2002 Jun 15;102(1-2):83-99.

PMID:
12191497
17.
18.
19.

Mammalian auditory hair cell regeneration/repair and protection: a review and future directions.

Feghali JG, Lefebvre PP, Staecker H, Kopke R, Frenz DA, Malgrange B, Liu W, Moonen G, Ruben RJ, Van de Water TR.

Ear Nose Throat J. 1998 Apr;77(4):276, 280, 282-5. Review.

PMID:
9581394

Supplemental Content

Support Center