Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 104

1.

Reassessment of the effect of glucagon and nucleotides on Candida albicans germ tube formation.

Zelada A, Castilla R, Passeron S, Cantore ML.

Cell Mol Biol (Noisy-le-grand). 1996 Jun;42(4):567-76.

PMID:
8828912
2.

N-acetyl-D-glucosamine-induced morphogenesis in Candida albicans.

Cassone A, Sullivan PA, Shepherd MG.

Microbiologica. 1985 Jan;8(1):85-99. Review.

PMID:
3883103
3.
4.

Starvation and germ tube formation in the exponential phase Candida albicans.

Cho T, Hamatake H, Kaminishi H, Kuroki A, Suehara T, Suehara Y, Sakima T, Hagihara Y, Watanabe K.

Fukuoka Shika Daigaku Gakkai Zasshi. 1989;16(4):510-21.

PMID:
2562099
5.

An analysis of the metabolism and cell wall composition of Candida albicans during germ-tube formation.

Sullivan PA, Yin CY, Molloy C, Templeton MD, Shepherd MG.

Can J Microbiol. 1983 Nov;29(11):1514-25.

PMID:
6322947
6.

Induction of N-acetyl-D-glucosamine catabolic enzymes and germinative response in Candida albicans.

Natarajan K, Rai YP, Datta A.

Biochem Int. 1984 Dec;9(6):735-44.

PMID:
6395867
7.
8.

Protein synthesis and amino acid pool during yeast-mycelial transition induced by N-acetyl-D-glucosamine in Candida albicans.

Torosantucci A, Angiolella L, Filesi C, Cassone A.

J Gen Microbiol. 1984 Dec;130(12):3285-93.

PMID:
6394717
9.
10.

Germ tube formation from zonal rotor fractions of Candida albicans.

Chaffin WL, Sogin SJ.

J Bacteriol. 1976 May;126(2):771-6.

12.

Identification of the dialysable serum inducer of germ-tube formation in Candida albicans.

Hudson DA, Sciascia QL, Sanders RJ, Norris GE, Edwards PJ, Sullivan PA, Farley PC.

Microbiology. 2004 Sep;150(Pt 9):3041-9.

PMID:
15347762
13.

[Induction of hyphal transformation, uptake and incorporation of N-acetyl-D-glucosamine in Candida albicans].

Mattia E, Carruba G, Angiolella L, Cassone A.

Ann Ist Super Sanita. 1982;18(3):493-6. Italian. No abstract available.

PMID:
6765081
14.

Morphological studies of N-acetylglucosamine induced germ tube formation by Candida albicans.

Hubbard MJ, Sullivan PA, Shepherd MG.

Can J Microbiol. 1985 Aug;31(8):696-701.

PMID:
3907814
15.

Antifungal effect of high- and low-molecular-weight chitosan hydrochloride, carboxymethyl chitosan, chitosan oligosaccharide and N-acetyl-D-glucosamine against Candida albicans, Candida krusei and Candida glabrata.

Seyfarth F, Schliemann S, Elsner P, Hipler UC.

Int J Pharm. 2008 Apr 2;353(1-2):139-48. doi: 10.1016/j.ijpharm.2007.11.029. Epub 2007 Nov 23.

PMID:
18164151
16.

Relationship between cell morphology and intracellular potassium concentration in Candida albicans.

Watanabe H, Azuma M, Igarashi K, Ooshima H.

J Antibiot (Tokyo). 2006 May;59(5):281-7.

PMID:
16883777
17.

Induction and morphogenesis of chlamydospores in an agerminative variant of Candida albicans.

Torosantucci A, Cassone A.

Sabouraudia. 1983 Mar;21(1):49-57.

PMID:
6342175
18.
19.

Germ tube growth of Candida albicans.

Gow NA.

Curr Top Med Mycol. 1997 Dec;8(1-2):43-55. Review.

PMID:
9504066
20.

Overexpression of the actin gene is associated with the morphogenesis of Candida albicans.

Paranjape V, Datta A.

Biochem Biophys Res Commun. 1991 Aug 30;179(1):423-7.

PMID:
1883368

Supplemental Content

Support Center