Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 126

1.
2.

The role of lysine 529, a conserved residue of the acyl-adenylate-forming enzyme superfamily, in firefly luciferase.

Branchini BR, Murtiashaw MH, Magyar RA, Anderson SM.

Biochemistry. 2000 May 9;39(18):5433-40.

PMID:
10820015
3.

Mutagenesis evidence that the partial reactions of firefly bioluminescence are catalyzed by different conformations of the luciferase C-terminal domain.

Branchini BR, Southworth TL, Murtiashaw MH, Wilkinson SR, Khattak NF, Rosenberg JC, Zimmer M.

Biochemistry. 2005 Feb 8;44(5):1385-93.

PMID:
15683224
4.

Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S.

Conti E, Stachelhaus T, Marahiel MA, Brick P.

EMBO J. 1997 Jul 16;16(14):4174-83.

5.

The 1.75 A crystal structure of acetyl-CoA synthetase bound to adenosine-5'-propylphosphate and coenzyme A.

Gulick AM, Starai VJ, Horswill AR, Homick KM, Escalante-Semerena JC.

Biochemistry. 2003 Mar 18;42(10):2866-73.

PMID:
12627952
6.

Firefly luciferase: an adenylate-forming enzyme for multicatalytic functions.

Inouye S.

Cell Mol Life Sci. 2010 Feb;67(3):387-404. doi: 10.1007/s00018-009-0170-8. Epub 2009 Oct 27. Review.

PMID:
19859663
7.

The dark and bright sides of an enzyme: a three dimensional structure of the N-terminal domain of Zophobas morio luciferase-like enzyme, inferences on the biological function and origin of oxygenase/luciferase activity.

Prado RA, Santos CR, Kato DI, Murakami MT, Viviani VR.

Photochem Photobiol Sci. 2016 May 11;15(5):654-65. doi: 10.1039/c6pp00017g. Epub 2016 Apr 21.

PMID:
27101527
8.

The role of active site residue arginine 218 in firefly luciferase bioluminescence.

Branchini BR, Magyar RA, Murtiashaw MH, Portier NC.

Biochemistry. 2001 Feb 27;40(8):2410-8.

PMID:
11327861
9.
10.

Crystal structure of firefly luciferase in a second catalytic conformation supports a domain alternation mechanism.

Sundlov JA, Fontaine DM, Southworth TL, Branchini BR, Gulick AM.

Biochemistry. 2012 Aug 21;51(33):6493-5. doi: 10.1021/bi300934s. Epub 2012 Aug 6.

11.
12.

Identification of luciferyl adenylate and luciferyl coenzyme a synthesized by firefly luciferase.

Fraga H, Esteves da Silva JC, Fontes R.

Chembiochem. 2004 Jan 3;5(1):110-5.

PMID:
14695520
13.

A route from darkness to light: emergence and evolution of luciferase activity in AMP-CoA-ligases inferred from a mealworm luciferase-like enzyme.

Viviani VR, Prado RA, Neves DR, Kato D, Barbosa JA.

Biochemistry. 2013 Jun 11;52(23):3963-73. doi: 10.1021/bi400141u. Epub 2013 May 30.

PMID:
23705763
14.

Structural basis for the inhibition of firefly luciferase by a general anesthetic.

Franks NP, Jenkins A, Conti E, Lieb WR, Brick P.

Biophys J. 1998 Nov;75(5):2205-11.

15.
16.

Luminescent and substrate binding activities of firefly luciferase N-terminal domain.

Zako T, Ayabe K, Aburatani T, Kamiya N, Kitayama A, Ueda H, Nagamune T.

Biochim Biophys Acta. 2003 Jul 30;1649(2):183-9.

PMID:
12878037
17.

A mutagenesis study of the putative luciferin binding site residues of firefly luciferase.

Branchini BR, Southworth TL, Murtiashaw MH, Boije H, Fleet SE.

Biochemistry. 2003 Sep 9;42(35):10429-36.

PMID:
12950169
18.

The origin, diversity, and structure function relationships of insect luciferases.

Viviani VR.

Cell Mol Life Sci. 2002 Nov;59(11):1833-50. Review.

PMID:
12530517
19.

Affinity labeling fatty acyl-CoA synthetase with 9-p-azidophenoxy nonanoic acid and the identification of the fatty acid-binding site.

Black PN, DiRusso CC, Sherin D, MacColl R, Knudsen J, Weimar JD.

J Biol Chem. 2000 Dec 8;275(49):38547-53.

20.

The mechanism of domain alternation in the acyl-adenylate forming ligase superfamily member 4-chlorobenzoate: coenzyme A ligase.

Wu R, Reger AS, Lu X, Gulick AM, Dunaway-Mariano D.

Biochemistry. 2009 May 19;48(19):4115-25. doi: 10.1021/bi9002327.

Supplemental Content

Support Center