Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 136

1.

Engineering the C-terminus of firefly luciferase as an indicator of covalent modification of proteins.

Waud JP, Sala-Newby GB, Matthews SB, Campbell AK.

Biochim Biophys Acta. 1996 Jan 4;1292(1):89-98.

PMID:
8547353
2.

Stepwise removal of the C-terminal 12 amino acids of firefly luciferase results in graded loss of activity.

Sala-Newby GB, Campbell AK.

Biochim Biophys Acta. 1994 May 18;1206(1):155-60.

PMID:
8186245
3.
4.

Engineering a bioluminescent indicator for cyclic AMP-dependent protein kinase.

Sala-Newby GB, Campbell AK.

Biochem J. 1991 Nov 1;279 ( Pt 3):727-32.

5.

Glu311 and Arg337 Stabilize a Closed Active-site Conformation and Provide a Critical Catalytic Base and Countercation for Green Bioluminescence in Beetle Luciferases.

Viviani VR, Simões A, Bevilaqua VR, Gabriel GV, Arnoldi FG, Hirano T.

Biochemistry. 2016 Aug 30;55(34):4764-76. doi: 10.1021/acs.biochem.6b00260. Epub 2016 Aug 18.

PMID:
27391007
6.

A cysteine-free firefly luciferase retains luminescence activity.

Kumita JR, Jain L, Safroneeva E, Woolley GA.

Biochem Biophys Res Commun. 2000 Jan 7;267(1):394-7.

PMID:
10623630
7.
8.

Site-directed mutagenesis of firefly luciferase active site amino acids: a proposed model for bioluminescence color.

Branchini BR, Magyar RA, Murtiashaw MH, Anderson SM, Helgerson LC, Zimmer M.

Biochemistry. 1999 Oct 5;38(40):13223-30.

PMID:
10529195
9.
10.

Improved practical usefulness of firefly luciferase by gene chimerization and random mutagenesis.

Hirokawa K, Kajiyama N, Murakami S.

Biochim Biophys Acta. 2002 Jun 3;1597(2):271-9.

PMID:
12044905
11.

Modification of luciferase to be a substrate for plant aspartic proteinase.

Amidon WJ, Pfeil JE, Gal S.

Biochem J. 1999 Oct 15;343 Pt 2:425-33.

12.

Structural evolution of luciferase activity in Zophobas mealworm AMP/CoA-ligase (protoluciferase) through site-directed mutagenesis of the luciferin binding site.

Prado RA, Barbosa JA, Ohmiya Y, Viviani VR.

Photochem Photobiol Sci. 2011 Jul;10(7):1226-32. doi: 10.1039/c0pp00392a. Epub 2011 Apr 19.

PMID:
21505686
13.

Thermostabilization of firefly luciferase by a single amino acid substitution at position 217.

Kajiyama N, Nakano E.

Biochemistry. 1993 Dec 21;32(50):13795-9.

PMID:
8268154
14.

Removal of twelve C-terminal amino acids from firefly luciferase abolishes activity.

Sala-Newby G, Kalsheker N, Campbell AK.

Biochem Biophys Res Commun. 1990 Oct 30;172(2):477-82.

PMID:
2241947
15.
16.

The luciferin binding site residues C/T311 (S314) influence the bioluminescence color of beetle luciferases through main-chain interaction with oxyluciferin phenolate.

Viviani VR, Amaral DT, Neves DR, Simões A, Arnoldi FG.

Biochemistry. 2013 Jan 8;52(1):19-27. doi: 10.1021/bi300740y. Epub 2012 Dec 13.

PMID:
23205709
17.

The role of active site residue arginine 218 in firefly luciferase bioluminescence.

Branchini BR, Magyar RA, Murtiashaw MH, Portier NC.

Biochemistry. 2001 Feb 27;40(8):2410-8.

PMID:
11327861
18.
19.

Creation of a thermostable firefly luciferase with pH-insensitive luminescent color.

Kitayama A, Yoshizaki H, Ohmiya Y, Ueda H, Nagamune T.

Photochem Photobiol. 2003 Mar;77(3):333-8.

PMID:
12685663
20.

Introduction to beetle luciferases and their applications.

Wood KV, Lam YA, McElroy WD.

J Biolumin Chemilumin. 1989 Jul;4(1):289-301. Review.

PMID:
2678917

Supplemental Content

Support Center