Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 136

1.

Biochemical and functional characterization of a recombinant GTPase, Rab5, and two of its mutants.

Hoffenberg S, Sanford JC, Liu S, Daniel DS, Tuvin M, Knoll BJ, Wessling-Resnick M, Dickey BF.

J Biol Chem. 1995 Mar 10;270(10):5048-56.

2.

Effect of guanine nucleotide binding on the intrinsic tryptophan fluorescence properties of Rab5.

Pan JY, Sanford JC, Wessling-Resnick M.

J Biol Chem. 1995 Oct 13;270(41):24204-8.

3.

Structural features of the GTP-binding defective Rab5 mutants required for their inhibitory activity on endocytosis.

Li G, Barbieri MA, Colombo MI, Stahl PD.

J Biol Chem. 1994 May 20;269(20):14631-5.

4.
5.

Characterization of a Gly19-->Val mutant of ram p25, a low Mr GTP-binding protein: loss of GTP/GDP-binding activity in the mutated ram p25.

Nagata K, Suzuki T, Okano Y, Hamaguchi M, Nozawa Y.

Biochem Biophys Res Commun. 1992 Nov 30;189(1):330-5.

PMID:
1449488
6.

A novel membrane-anchored Rab5 interacting protein required for homotypic endosome fusion.

Hoffenberg S, Liu X, Nikolova L, Hall HS, Dai W, Baughn RE, Dickey BF, Barbieri MA, Aballay A, Stahl PD, Knoll BJ.

J Biol Chem. 2000 Aug 11;275(32):24661-9.

7.

Structure-function relationship of the small GTPase rab5.

Li G, Stahl PD.

J Biol Chem. 1993 Nov 15;268(32):24475-80.

8.

Rac1, a low-molecular-mass GTP-binding-protein with high intrinsic GTPase activity and distinct biochemical properties.

Ménard L, Tomhave E, Casey PJ, Uhing RJ, Snyderman R, Didsbury JR.

Eur J Biochem. 1992 Jun 1;206(2):537-46.

9.

Influence of Mg2+ on the structure and function of Rab5.

Pan JY, Sanford JC, Wessling-Resnick M.

J Biol Chem. 1996 Jan 19;271(3):1322-8.

10.

Kinetics of interaction of Rab5 and Rab7 with nucleotides and magnesium ions.

Simon I, Zerial M, Goody RS.

J Biol Chem. 1996 Aug 23;271(34):20470-8.

11.

Characterization and site-directed mutagenesis of a low M(r) GTP-binding protein, ram p25, expressed in Escherichia coli.

Nagata K, Suzuki T, Shibagaki Y, Mizumoto K, Okano Y, Kaziro Y, Nozawa Y.

J Biol Chem. 1992 Sep 25;267(27):19600-6.

12.
13.

Evidence for a symmetrical requirement for Rab5-GTP in in vitro endosome-endosome fusion.

Barbieri MA, Hoffenberg S, Roberts R, Mukhopadhyay A, Pomrehn A, Dickey BF, Stahl PD.

J Biol Chem. 1998 Oct 2;273(40):25850-5.

14.

A GDP/GTP exchange-stimulatory activity for the Rab5-RabGDI complex on clathrin-coated vesicles from bovine brain.

Horiuchi H, Giner A, Hoflack B, Zerial M.

J Biol Chem. 1995 May 12;270(19):11257-62.

15.

Mechanism of GTP hydrolysis by G-protein alpha subunits.

Kleuss C, Raw AS, Lee E, Sprang SR, Gilman AG.

Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9828-31.

16.

Conditional activation defect of a human Gsalpha mutant.

Iiri T, Farfel Z, Bourne HR.

Proc Natl Acad Sci U S A. 1997 May 27;94(11):5656-61.

17.

GTPase activity of Rab5 acts as a timer for endocytic membrane fusion.

Rybin V, Ullrich O, Rubino M, Alexandrov K, Simon I, Seabra MC, Goody R, Zerial M.

Nature. 1996 Sep 19;383(6597):266-9.

PMID:
8805704
18.

Crystal structure of human RhoA in a dominantly active form complexed with a GTP analogue.

Ihara K, Muraguchi S, Kato M, Shimizu T, Shirakawa M, Kuroda S, Kaibuchi K, Hakoshima T.

J Biol Chem. 1998 Apr 17;273(16):9656-66.

19.
20.

Supplemental Content

Support Center