Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 148

2.

Experience with a small animal hyperthermia ultrasound system (SAHUS): report on 83 tumours.

Novák P, Moros EG, Parry JJ, Rogers BE, Myerson RJ, Zeug A, Locke JE, Rossin R, Straube WL, Singh AK.

Phys Med Biol. 2005 Nov 7;50(21):5127-39. Epub 2005 Oct 19.

PMID:
16237245
3.

Hot spots created at skin-air interfaces during ultrasound hyperthermia.

Hynynen K.

Int J Hyperthermia. 1990 Nov-Dec;6(6):1005-12.

PMID:
2286789
4.

Investigation of the viscous heating artefact arising from the use of thermocouples in a focused ultrasound field.

Morris H, Rivens I, Shaw A, Haar GT.

Phys Med Biol. 2008 Sep 7;53(17):4759-76. doi: 10.1088/0031-9155/53/17/020. Epub 2008 Aug 13.

PMID:
18701773
5.

A scanned, focused, multiple transducer ultrasonic system for localized hyperthermia treatments.

Hynynen K, Roemer R, Anhalt D, Johnson C, Xu ZX, Swindell W, Cetas T.

Int J Hyperthermia. 1987 Jan-Feb;3(1):21-35.

PMID:
3559296
6.

Clinical studies with ultrasound-induced hyperthermia.

Marmor JB, Pounds D, Hahn GM.

Natl Cancer Inst Monogr. 1982 Jun;61:333-7.

PMID:
6757750
7.

Heating patterns produced by 434 MHz erbotherm UHF 69.

Paliwal BR, Cardozo C, Jafari F, Hanson J, Caldwell W.

Radiology. 1980 May;135(2):511-2.

PMID:
7367648
8.
9.

Temperature elevation at muscle-bone interface during scanned, focused ultrasound hyperthermia.

Hynynen K, DeYoung D.

Int J Hyperthermia. 1988 May-Jun;4(3):267-79.

PMID:
3290347
10.

Measurements of effective thermal conductivity during hyperthermia: a comparison of experimental and clinical results.

Delannoy J, Giaux G, Dittmar A, Newman WH, Delhomme G, Delvalee D.

Int J Hyperthermia. 1990 Jan-Feb;6(1):143-54.

PMID:
2299227
11.

Radiofrequency diathermy for uniform heating of mouse tumours.

Joiner MC, Vojnovic B.

Br J Cancer Suppl. 1982 Mar;5:71-6.

12.

MicroPET-compatible, small animal hyperthermia ultrasound system (SAHUS) for sustainable, collimated and controlled hyperthermia of subcutaneously implanted tumours.

Singh AK, Moros EG, Novak P, Straube W, Zeug A, Locke JE, Myerson RJ.

Int J Hyperthermia. 2004 Feb;20(1):32-44.

PMID:
14612312
13.

Investigation of a scanned cylindrical ultrasound system for breast hyperthermia.

Ju KC, Tseng LT, Chen YY, Lin WL.

Phys Med Biol. 2006 Feb 7;51(3):539-55. Epub 2006 Jan 11.

PMID:
16424580
14.

Localization of focused-ultrasound beams in a tissue phantom, using remote thermocouple arrays.

Hariharan P, Dibaji SA, Banerjee RK, Nagaraja S, Myers MR.

IEEE Trans Ultrason Ferroelectr Freq Control. 2014 Dec;61(12):2019-31. doi: 10.1109/TUFFC.2014.006702.

PMID:
25474777
15.

Pre-focal plane high-temperature regions induced by scanning focused ultrasound beams.

Moros EG, Roemer RB, Hynynen K.

Int J Hyperthermia. 1990 Mar-Apr;6(2):351-66.

PMID:
2324574
16.

MRI monitoring of heating produced by ultrasound absorption in the skull: in vivo study in pigs.

McDannold N, King RL, Hynynen K.

Magn Reson Med. 2004 May;51(5):1061-5.

17.

Prospective treatment planning to improve locoregional hyperthermia for oesophageal cancer.

Kok HP, van Haaren PM, van de Kamer JB, Zum Vörde Sive Vörding PJ, Wiersma J, Hulshof MC, Geijsen ED, van Lanschot JJ, Crezee J.

Int J Hyperthermia. 2006 Aug;22(5):375-89.

PMID:
16891240
18.

Use of combined systemic hypothermia and local heat treatment to enhance temperature differences between tumor and normal tissues.

Babbs CF, Voorhees WD 3rd, Clark RR, DeWitt DP.

Med Instrum. 1985 Jan-Feb;19(1):27-33.

PMID:
3990596
19.

Observations of thermal gradients in perfused tissues during water bath heating.

Brown SL, Li XL, Pai HH, Worthington AE, Hill RP, Hunt JW.

Int J Hyperthermia. 1992 Mar-Apr;8(2):275-87.

PMID:
1573316
20.

Performance of a multi-sector ultrasound hyperthermia applicator and control system: in vivo studies.

Ogilvie GK, Reynolds HA, Richardson BC, Badger CW, Goss SA, Burdette EC.

Int J Hyperthermia. 1990 May-Jun;6(3):697-705.

PMID:
2376680

Supplemental Content

Support Center