Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 78

2.

Changes in the cell surface of the dimorphic forms of Candida albicans by treatment with hydrolytic enzymes.

Chattaway FW, Shenolikar S, O'Reilly J, Barlow AJ.

J Gen Microbiol. 1976 Aug;96(2):335-47.

PMID:
784907
3.

Brefeldin A blocks an early stage of protein transport in Candida albicans.

Arioka M, Hirata A, Takatsuki A, Yamasaki M.

J Gen Microbiol. 1991 Jun;137(6):1253-62.

4.

Characterization of cerulenin-resistant mutants of Candida albicans.

Hoberg KA, Cihlar RL, Calderone RA.

Infect Immun. 1986 Jan;51(1):102-9.

5.

Impact of the unfolded protein response upon genome-wide expression patterns, and the role of Hac1 in the polarized growth, of Candida albicans.

Wimalasena TT, Enjalbert B, Guillemette T, Plumridge A, Budge S, Yin Z, Brown AJ, Archer DB.

Fungal Genet Biol. 2008 Sep;45(9):1235-47. doi: 10.1016/j.fgb.2008.06.001. Epub 2008 Jun 14.

PMID:
18602013
6.

Biosynthesis of glycoproteins in Candida albicans: activity of dolichol phosphate mannose synthase and protein mannosylation in a mixed membrane fraction.

Arroyo-Flores BL, Calvo-Méndez C, Flores-Carreón A, López-Romero E.

Microbiology. 1995 Sep;141 ( Pt 9):2289-94.

PMID:
7496540
7.

Biosynthesis of glycoproteins in Candida albicans: processing of a Man6-GlcNAc2-Asn oligosaccharide by membrane fractions.

Flores-Carreón A, Balcázar-Orozco R.

FEMS Microbiol Lett. 1993 Jun 1;110(1):121-5.

PMID:
8319889
9.

Mannan-protein location and biosynthesis in plasma membranes from the yeast form of Candida albicans.

Marriott MS.

J Gen Microbiol. 1977 Nov;103(1):51-9. No abstract available.

10.

Multiple effects of amprenavir against Candida albicans.

Braga-Silva LA, Mogami SS, Valle RS, Silva-Neto ID, Santos AL.

FEMS Yeast Res. 2010 Mar;10(2):221-4. doi: 10.1111/j.1567-1364.2009.00595.x. Epub 2009 Nov 23.

11.

Difference in fine specificity to polysaccharides of Candida albicans mannoprotein between mouse SIGNR1 and human DC-SIGN.

Takahara K, Arita T, Tokieda S, Shibata N, Okawa Y, Tateno H, Hirabayashi J, Inaba K.

Infect Immun. 2012 May;80(5):1699-706. doi: 10.1128/IAI.06308-11. Epub 2012 Feb 13.

12.

Mycelial development and chemical alteration of Candida albicans from biotin insufficiency.

Yamaguchi H.

Sabouraudia. 1974 Nov;12(3):320-8. No abstract available.

PMID:
4610824
13.

The N-terminal part of Als1 protein from Candida albicans specifically binds fucose-containing glycans.

Donohue DS, Ielasi FS, Goossens KV, Willaert RG.

Mol Microbiol. 2011 Jun;80(6):1667-79. doi: 10.1111/j.1365-2958.2011.07676.x. Epub 2011 May 17.

14.

Some biological features of Candida albicans mutants for genes coding fungal proteins containing the CFEM domain.

Pérez A, Ramage G, Blanes R, Murgui A, Casanova M, Martínez JP.

FEMS Yeast Res. 2011 May;11(3):273-84. doi: 10.1111/j.1567-1364.2010.00714.x. Epub 2011 Jan 17.

15.

Cell wall of Candida albicans as a factor of pathogenicity.

Weigl E, Hejtmánková I, Halaxová R.

Acta Univ Palacki Olomuc Fac Med. 1989;122:45-53.

PMID:
2530846
16.

Adherence and receptor relationships of Candida albicans.

Calderone RA, Braun PC.

Microbiol Rev. 1991 Mar;55(1):1-20. Review.

17.

Rbt1 protein domains analysis in Candida albicans brings insights into hyphal surface modifications and Rbt1 potential role during adhesion and biofilm formation.

Monniot C, Boisramé A, Da Costa G, Chauvel M, Sautour M, Bougnoux ME, Bellon-Fontaine MN, Dalle F, d'Enfert C, Richard ML.

PLoS One. 2013 Dec 5;8(12):e82395. doi: 10.1371/journal.pone.0082395. eCollection 2013.

18.
19.
20.

N-glycosylation of yeast, with emphasis on Candida albicans.

Cutler JE.

Med Mycol. 2001;39 Suppl 1:75-86. Review.

PMID:
11800271

Supplemental Content

Support Center