Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 95

1.

Understanding the glioblastoma immune microenvironment as basis for the development of new immunotherapeutic strategies.

Pombo Antunes AR, Scheyltjens I, Duerinck J, Neyns B, Movahedi K, Van Ginderachter JA.

Elife. 2020 Feb 4;9. pii: e52176. doi: 10.7554/eLife.52176.

2.

Future perspectives in melanoma research : Meeting report from the "Melanoma Bridge". Napoli, December 1st-4th 2015.

Ascierto PA, Agarwala S, Botti G, Cesano A, Ciliberto G, Davies MA, Demaria S, Dummer R, Eggermont AM, Ferrone S, Fu YX, Gajewski TF, Garbe C, Huber V, Khleif S, Krauthammer M, Lo RS, Masucci G, Palmieri G, Postow M, Puzanov I, Silk A, Spranger S, Stroncek DF, Tarhini A, Taube JM, Testori A, Wang E, Wargo JA, Yee C, Zarour H, Zitvogel L, Fox BA, Mozzillo N, Marincola FM, Thurin M.

J Transl Med. 2016 Nov 15;14(1):313.

3.

Immunosuppressive tumor-infiltrating myeloid cells mediate adaptive immune resistance via a PD-1/PD-L1 mechanism in glioblastoma.

Antonios JP, Soto H, Everson RG, Moughon D, Orpilla JR, Shin NP, Sedighim S, Treger J, Odesa S, Tucker A, Yong WH, Li G, Cloughesy TF, Liau LM, Prins RM.

Neuro Oncol. 2017 Jun 1;19(6):796-807. doi: 10.1093/neuonc/now287.

4.

Oncolytic herpes simplex virus immunovirotherapy in combination with immune checkpoint blockade to treat glioblastoma.

Saha D, Martuza RL, Rabkin SD.

Immunotherapy. 2018 Jul;10(9):779-786. doi: 10.2217/imt-2018-0009.

5.

Non-viral nano-immunotherapeutics targeting tumor microenvironmental immune cells.

Yong SB, Chung JY, Song Y, Kim J, Ra S, Kim YH.

Biomaterials. 2019 Oct;219:119401. doi: 10.1016/j.biomaterials.2019.119401. Epub 2019 Jul 31. Review.

PMID:
31398571
6.

Immunotherapeutic Potential of Oncolytic H-1 Parvovirus: Hints of Glioblastoma Microenvironment Conversion towards Immunogenicity.

Angelova AL, Barf M, Geletneky K, Unterberg A, Rommelaere J.

Viruses. 2017 Dec 15;9(12). pii: E382. doi: 10.3390/v9120382.

7.

Cancer Immunotherapy Targets Based on Understanding the T Cell-Inflamed Versus Non-T Cell-Inflamed Tumor Microenvironment.

Gajewski TF, Corrales L, Williams J, Horton B, Sivan A, Spranger S.

Adv Exp Med Biol. 2017;1036:19-31. doi: 10.1007/978-3-319-67577-0_2. Review.

8.

The network of immunosuppressive pathways in glioblastoma.

Mangani D, Weller M, Roth P.

Biochem Pharmacol. 2017 Apr 15;130:1-9. doi: 10.1016/j.bcp.2016.12.011. Epub 2016 Dec 22. Review.

9.

Gene therapy-mediated reprogramming tumor infiltrating T cells using IL-2 and inhibiting NF-κB signaling improves the efficacy of immunotherapy in a brain cancer model.

Mineharu Y, Muhammad AK, Yagiz K, Candolfi M, Kroeger KM, Xiong W, Puntel M, Liu C, Levy E, Lugo C, Kocharian A, Allison JP, Curran MA, Lowenstein PR, Castro MG.

Neurotherapeutics. 2012 Oct;9(4):827-43. doi: 10.1007/s13311-012-0144-7.

10.

Reduction of immunosuppressive tumor microenvironment in cholangiocarcinoma by ex vivo targeting immune checkpoint molecules.

Zhou G, Sprengers D, Mancham S, Erkens R, Boor PPC, van Beek AA, Doukas M, Noordam L, Campos Carrascosa L, de Ruiter V, van Leeuwen RWF, Polak WG, de Jonge J, Groot Koerkamp B, van Rosmalen B, van Gulik TM, Verheij J, IJzermans JNM, Bruno MJ, Kwekkeboom J.

J Hepatol. 2019 Oct;71(4):753-762. doi: 10.1016/j.jhep.2019.05.026. Epub 2019 Jun 11.

PMID:
31195061
11.

Emerging role of immunotherapy in urothelial carcinoma-Immunobiology/biomarkers.

Sweis RF, Galsky MD.

Urol Oncol. 2016 Dec;34(12):556-565. doi: 10.1016/j.urolonc.2016.10.006. Epub 2016 Nov 9. Review.

12.

Immunomodulating and Immunoresistance Properties of Cancer-Initiating Cells: Implications for the Clinical Success of Immunotherapy.

Maccalli C, Parmiani G, Ferrone S.

Immunol Invest. 2017 Apr;46(3):221-238. doi: 10.1080/08820139.2017.1280051. Epub 2017 Mar 13. Review.

PMID:
28287848
13.
14.

Therapeutic gene modified cell based cancer vaccines.

Kozłowska A, Mackiewicz J, Mackiewicz A.

Gene. 2013 Aug 10;525(2):200-7. doi: 10.1016/j.gene.2013.03.056. Epub 2013 Apr 6. Review.

PMID:
23566846
15.

GARP as an Immune Regulatory Molecule in the Tumor Microenvironment of Glioblastoma Multiforme.

Zimmer N, Kim E, Sprang B, Leukel P, Khafaji F, Ringel F, Sommer C, Tuettenberg J, Tuettenberg A.

Int J Mol Sci. 2019 Jul 26;20(15). pii: E3676. doi: 10.3390/ijms20153676.

16.

ILT4 functions as a potential checkpoint molecule for tumor immunotherapy.

Gao A, Sun Y, Peng G.

Biochim Biophys Acta Rev Cancer. 2018 Apr;1869(2):278-285. doi: 10.1016/j.bbcan.2018.04.001. Epub 2018 Apr 10. Review.

PMID:
29649510
17.

Genetically Engineered Macrophages: A Potential Platform for Cancer Immunotherapy.

Moyes KW, Lieberman NA, Kreuser SA, Chinn H, Winter C, Deutsch G, Hoglund V, Watson R, Crane CA.

Hum Gene Ther. 2017 Feb;28(2):200-215. doi: 10.1089/hum.2016.060. Epub 2016 Oct 18. Review.

PMID:
27758144
18.

CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models.

Zhu Y, Knolhoff BL, Meyer MA, Nywening TM, West BL, Luo J, Wang-Gillam A, Goedegebuure SP, Linehan DC, DeNardo DG.

Cancer Res. 2014 Sep 15;74(18):5057-69. doi: 10.1158/0008-5472.CAN-13-3723. Epub 2014 Jul 31.

19.

Challenges and potential of PD-1/PD-L1 checkpoint blockade immunotherapy for glioblastoma.

Wang X, Guo G, Guan H, Yu Y, Lu J, Yu J.

J Exp Clin Cancer Res. 2019 Feb 18;38(1):87. doi: 10.1186/s13046-019-1085-3. Review.

20.

High immunosuppressive burden in cancer patients: a major hurdle for cancer immunotherapy.

Kalathil SG, Thanavala Y.

Cancer Immunol Immunother. 2016 Jul;65(7):813-9. doi: 10.1007/s00262-016-1810-0. Epub 2016 Feb 24. Review.

Supplemental Content

Support Center