Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 102

1.

Luminescent lanthanide metal-organic framework test strip for immediate detection of tetracycline antibiotics in water.

Li C, Zeng C, Chen Z, Jiang Y, Yao H, Yang Y, Wong WT.

J Hazard Mater. 2020 Feb 15;384:121498. doi: 10.1016/j.jhazmat.2019.121498. Epub 2019 Oct 22.

PMID:
31796349
2.

Highly luminescent sensing for nitrofurans and tetracyclines in water based on zeolitic imidazolate framework-8 incorporated with dyes.

Zhang YQ, Wu XH, Mao S, Tao WQ, Li Z.

Talanta. 2019 Nov 1;204:344-352. doi: 10.1016/j.talanta.2019.06.019. Epub 2019 Jun 8.

PMID:
31357303
3.

Mixed matrix membranes incorporated with Ln-MOF for selective and sensitive detection of nitrofuran antibiotics based on inner filter effect.

Zhang F, Yao H, Zhao Y, Li X, Zhang G, Yang Y.

Talanta. 2017 Nov 1;174:660-666. doi: 10.1016/j.talanta.2017.07.007. Epub 2017 Jul 3.

PMID:
28738638
4.

A mechanical stability enhanced luminescence lanthanide MOF test strip encapsulated with polymer net for detecting picric acid and macrodantin.

Zhang F, Ma J, Huang S, Li Y.

Spectrochim Acta A Mol Biomol Spectrosc. 2019 Nov 19:117816. doi: 10.1016/j.saa.2019.117816. [Epub ahead of print]

PMID:
31771909
5.

A highly fluorescent lanthanide metal-organic framework as dual-mode visual sensor for berberine hydrochloride and tetracycline.

Xiong J, Yang L, Gao LX, Zhu PP, Chen Q, Tan KJ.

Anal Bioanal Chem. 2019 Sep;411(23):5963-5973. doi: 10.1007/s00216-019-02004-9. Epub 2019 Jul 13.

PMID:
31300859
6.

Oxidation of tetracycline antibiotics induced by Fe(III) ions without light irradiation.

Wang H, Yao H, Sun P, Pei J, Li D, Huang CH.

Chemosphere. 2015 Jan;119:1255-1261. doi: 10.1016/j.chemosphere.2014.09.098. Epub 2014 Nov 1.

PMID:
25460769
7.

Using target-specific aptamers to enhance the peroxidase-like activity of gold nanoclusters for colorimetric detection of tetracycline antibiotics.

Zhang Z, Tian Y, Huang P, Wu FY.

Talanta. 2020 Feb 1;208:120342. doi: 10.1016/j.talanta.2019.120342. Epub 2019 Sep 9.

PMID:
31816712
8.

Simultaneous removal of tetracycline and oxytetracycline antibiotics from wastewater using a ZIF-8 metal organic-framework.

Li N, Zhou L, Jin X, Owens G, Chen Z.

J Hazard Mater. 2019 Mar 15;366:563-572. doi: 10.1016/j.jhazmat.2018.12.047. Epub 2018 Dec 14.

PMID:
30572296
9.

Visual detection of tetracycline antibiotics with the turned on fluorescence induced by a metal-organic coordination polymer.

Leng F, Zhao XJ, Wang J, Li YF.

Talanta. 2013 Mar 30;107:396-401. doi: 10.1016/j.talanta.2013.01.039. Epub 2013 Jan 29.

PMID:
23598240
10.

Competitive adsorption of tetracycline, oxytetracycline and chlortetracycline on soils with different pH value and organic matter content.

Conde-Cid M, Ferreira-Coelho G, Núñez-Delgado A, Fernández-Calviño D, Arias-Estévez M, Álvarez-Rodríguez E, Fernández-Sanjurjo MJ.

Environ Res. 2019 Nov;178:108669. doi: 10.1016/j.envres.2019.108669. Epub 2019 Aug 17.

PMID:
31450146
11.
12.

Dissipation kinetics of oxytetracycline, tetracycline, and chlortetracycline residues in soil.

Li Y, Wang H, Liu X, Zhao G, Sun Y.

Environ Sci Pollut Res Int. 2016 Jul;23(14):13822-31. doi: 10.1007/s11356-016-6513-8. Epub 2016 Apr 13.

PMID:
27072037
13.

Photochemical transformations of tetracycline antibiotics influenced by natural colloidal particles: Kinetics, factor effects and mechanisms.

Liu F, Liu X, Zhao S, Wang J, Qian X, Cui B, Bai J.

Chemosphere. 2019 Nov;235:867-875. doi: 10.1016/j.chemosphere.2019.06.201. Epub 2019 Jun 26.

PMID:
31284135
14.

Construction of Ce-MOF@COF hybrid nanostructure: Label-free aptasensor for the ultrasensitive detection of oxytetracycline residues in aqueous solution environments.

Zhou N, Ma Y, Hu B, He L, Wang S, Zhang Z, Lu S.

Biosens Bioelectron. 2019 Feb 15;127:92-100. doi: 10.1016/j.bios.2018.12.024. Epub 2018 Dec 18.

PMID:
30594079
15.
16.

A Ratiometric Fluorescent Nano-Probe for Rapid and Specific Detection of Tetracycline Residues Based on a Dye-Doped Functionalized Nanoscaled Metal-Organic Framework.

Jia L, Guo S, Xu J, Chen X, Zhu T, Zhao T.

Nanomaterials (Basel). 2019 Jul 4;9(7). pii: E976. doi: 10.3390/nano9070976.

17.

Transformation of Tetracycline Antibiotics and Fe(II) and Fe(III) Species Induced by Their Complexation.

Wang H, Yao H, Sun P, Li D, Huang CH.

Environ Sci Technol. 2016 Jan 5;50(1):145-53. doi: 10.1021/acs.est.5b03696. Epub 2015 Dec 11.

PMID:
26618388
18.

White-Light-Emitting Decoding Sensing for Eight Frequently-Used Antibiotics Based on a Lanthanide Metal-Organic Framework.

Yu M, Yao X, Wang X, Li Y, Li G.

Polymers (Basel). 2019 Jan 9;11(1). pii: E99. doi: 10.3390/polym11010099.

19.

Heterometallic Alkaline Earth-Lanthanide Ba(II)-La(III) Microporous Metal-Organic Framework as Bifunctional Luminescent Probes of Al(3+) and MnO4(.).

Ding B, Liu SX, Cheng Y, Guo C, Wu XX, Guo JH, Liu YY, Li Y.

Inorg Chem. 2016 May 2;55(9):4391-402. doi: 10.1021/acs.inorgchem.6b00111. Epub 2016 Apr 18.

PMID:
27088966
20.

Optical fiber sensor for the detection of tetracycline using surface plasmon resonance and molecular imprinting.

Verma R, Gupta BD.

Analyst. 2013 Dec 7;138(23):7254-63. doi: 10.1039/c3an01098h.

PMID:
24098880

Supplemental Content

Support Center