Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Pectin oligosaccharides from hawthorn (Crataegus pinnatifida Bunge. Var. major) inhibit the formation of advanced glycation end products in infant formula milk powder.

Zhu R, Hong M, Zhuang C, Zhang L, Wang C, Liu J, Duan Z, Shang F, Hu F, Li T, Ning C, Chen G.

Food Funct. 2019 Dec 11;10(12):8081-8093. doi: 10.1039/c9fo01041f.

PMID:
31735943
2.

Pectin oligosaccharides from hawthorn (Crataegus pinnatifida Bunge. Var. major): Molecular characterization and potential antiglycation activities.

Zhu R, Zhang X, Wang Y, Zhang L, Wang C, Hu F, Ning C, Chen G.

Food Chem. 2019 Jul 15;286:129-135. doi: 10.1016/j.foodchem.2019.01.215. Epub 2019 Feb 12.

PMID:
30827585
3.

Pectin oligosaccharides from fruit of Actinidia arguta: Structure-activity relationship of prebiotic and antiglycation potentials.

Zhu R, Wang C, Zhang L, Wang Y, Chen G, Fan J, Jia Y, Yan F, Ning C.

Carbohydr Polym. 2019 Aug 1;217:90-97. doi: 10.1016/j.carbpol.2019.04.032. Epub 2019 Apr 9.

PMID:
31079689
4.

Quantitation of α-Dicarbonyls and Advanced Glycation Endproducts in Conventional and Lactose-Hydrolyzed Ultrahigh Temperature Milk during 1 Year of Storage.

Zhang W, Poojary MM, Rauh V, Ray CA, Olsen K, Lund MN.

J Agric Food Chem. 2019 Nov 20;67(46):12863-12874. doi: 10.1021/acs.jafc.9b05037. Epub 2019 Nov 12.

PMID:
31670949
5.

Supplementation of milk formula with galacto-oligosaccharides improves intestinal micro-flora and fermentation in term infants.

Ben XM, Zhou XY, Zhao WH, Yu WL, Pan W, Zhang WL, Wu SM, Van Beusekom CM, Schaafsma A.

Chin Med J (Engl). 2004 Jun;117(6):927-31.

PMID:
15198901
6.

Prebiotic effect of an infant formula supplemented with galacto-oligosaccharides: randomized multicenter trial.

Giovannini M, Verduci E, Gregori D, Ballali S, Soldi S, Ghisleni D, Riva E; PLAGOS Trial Study Group.

J Am Coll Nutr. 2014;33(5):385-93. doi: 10.1080/07315724.2013.878232. Epub 2014 Oct 10.

PMID:
25302927
7.

A fermented milk concentrate and a combination of short-chain galacto-oligosaccharides/long-chain fructo-oligosaccharides/pectin-derived acidic oligosaccharides protect suckling rats from rotavirus gastroenteritis.

Rigo-Adrover M, Pérez-Berezo T, Ramos-Romero S, van Limpt K, Knipping K, Garssen J, Knol J, Franch À, Castell M, Pérez-Cano FJ.

Br J Nutr. 2017 Jan;117(2):209-217. doi: 10.1017/S0007114516004566. Epub 2017 Feb 7.

PMID:
28166850
8.

Prebiotic effect of fructo-oligosaccharide supplemented term infant formula at two concentrations compared with unsupplemented formula and human milk.

Euler AR, Mitchell DK, Kline R, Pickering LK.

J Pediatr Gastroenterol Nutr. 2005 Feb;40(2):157-64.

PMID:
15699689
9.

Quantitative analysis of intestinal bacterial populations from term infants fed formula supplemented with fructo-oligosaccharides.

Xia Q, Williams T, Hustead D, Price P, Morrison M, Yu Z.

J Pediatr Gastroenterol Nutr. 2012 Sep;55(3):314-20. doi: 10.1097/MPG.0b013e3182523254.

PMID:
22395187
10.

Effects of heating on the secondary structure of proteins in milk powders using mid-infrared spectroscopy.

Ye MP, Zhou R, Shi YR, Chen HC, Du Y.

J Dairy Sci. 2017 Jan;100(1):89-95. doi: 10.3168/jds.2016-11443. Epub 2016 Nov 17.

11.

Prebiotic concept for infant nutrition.

Boehm G, Fanaro S, Jelinek J, Stahl B, Marini A.

Acta Paediatr Suppl. 2003 Sep;91(441):64-7.

PMID:
14599044
12.

Oligosaccharides in infant formula: more evidence to validate the role of prebiotics.

Vandenplas Y, Zakharova I, Dmitrieva Y.

Br J Nutr. 2015 May 14;113(9):1339-44. doi: 10.1017/S0007114515000823. Review.

PMID:
25989994
13.

Advanced glycation end products in infant formulas do not contribute to insulin resistance associated with their consumption.

Klenovics KS, Boor P, Somoza V, Celec P, Fogliano V, Sebeková K.

PLoS One. 2013;8(1):e53056. doi: 10.1371/journal.pone.0053056. Epub 2013 Jan 2.

14.

Nε-carboxymethyllysine in nutritional milk formulas for infants.

Prosser CG, Carpenter EA, Hodgkinson AJ.

Food Chem. 2019 Feb 15;274:886-890. doi: 10.1016/j.foodchem.2018.09.069. Epub 2018 Sep 11.

15.

Non-nutritive sweeteners are in concomitant with the formation of endogenous and exogenous advanced glycation end-products.

Deo P, Chern C, Peake B, Tan SY.

Int J Food Sci Nutr. 2020 Jan 9:1-9. doi: 10.1080/09637486.2020.1712683. [Epub ahead of print]

PMID:
31918589
16.

Effects of raw meat and process procedure on Nε-carboxymethyllysine and Nε-carboxyethyl-lysine formation in meat products.

Yu L, Gao C, Zeng M, He Z, Wang L, Zhang S, Chen J.

Food Sci Biotechnol. 2016 Aug 31;25(4):1163-1168. doi: 10.1007/s10068-016-0185-5. eCollection 2016.

17.

Formation of advanced glycation endproducts in ground beef under pasteurisation conditions.

Sun X, Tang J, Wang J, Rasco BA, Lai K, Huang Y.

Food Chem. 2015 Apr 1;172:802-7. doi: 10.1016/j.foodchem.2014.09.129. Epub 2014 Sep 28.

PMID:
25442623
18.

Dietary prebiotic oligosaccharides are detectable in the faeces of formula-fed infants.

Moro GE, Stahl B, Fanaro S, Jelinek J, Boehm G, Coppa GV.

Acta Paediatr Suppl. 2005 Oct;94(449):27-30.

PMID:
16214762
19.

Encapsulation of ascorbic acid promotes the reduction of Maillard reaction products in UHT milk.

Troise AD, Vitiello D, Tsang C, Fiore A.

Food Funct. 2016 Jun 15;7(6):2591-602. doi: 10.1039/c6fo00151c. Epub 2016 May 31.

PMID:
27240727
20.

Short-term effects of dietary advanced glycation end products in rats.

Poulsen MW, Andersen JM, Hedegaard RV, Madsen AN, Krath BN, Monošík R, Bak MJ, Nielsen J, Holst B, Skibsted LH, Larsen LH, Dragsted LO.

Br J Nutr. 2016 Feb 28;115(4):629-36. doi: 10.1017/S0007114515004833.

PMID:
26824730

Supplemental Content

Support Center