Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99

1.

Synthesis of metal phosphide nanoparticles supported on Porous N-doped carbon derived from Spirulina for Universal pH value Hydrogen Evolution Reaction.

Yang M, Feng F, Wang K, Li S, Huang X, Gong L, Ma L, Li R.

ChemSusChem. 2019 Nov 13. doi: 10.1002/cssc.201902920. [Epub ahead of print]

PMID:
31721453
2.

Microbial-Phosphorus-Enabled Synthesis of Phosphide Nanocomposites for Efficient Electrocatalysts.

Zhang TQ, Liu J, Huang LB, Zhang XD, Sun YG, Liu XC, Bin DS, Chen X, Cao AM, Hu JS, Wan LJ.

J Am Chem Soc. 2017 Aug 16;139(32):11248-11253. doi: 10.1021/jacs.7b06123. Epub 2017 Aug 3.

PMID:
28753287
3.

General Strategy for the Synthesis of Transition-Metal Phosphide/N-Doped Carbon Frameworks for Hydrogen and Oxygen Evolution.

Pu Z, Zhang C, Amiinu IS, Li W, Wu L, Mu S.

ACS Appl Mater Interfaces. 2017 May 17;9(19):16187-16193. doi: 10.1021/acsami.7b02069. Epub 2017 May 4.

PMID:
28452469
4.

MXP(M = Co/Ni)@carbon core-shell nanoparticles embedded in 3D cross-linked graphene aerogel derived from seaweed biomass for hydrogen evolution reaction.

Zhao W, Lu X, Selvaraj M, Wei W, Jiang Z, Ullah N, Liu J, Xie J.

Nanoscale. 2018 May 24;10(20):9698-9706. doi: 10.1039/c8nr02852d.

PMID:
29762620
5.

Nanosized Metal Phosphides Embedded in Nitrogen-Doped Porous Carbon Nanofibers for Enhanced Hydrogen Evolution at All pH Values.

Wang MQ, Ye C, Liu H, Xu M, Bao SJ.

Angew Chem Int Ed Engl. 2018 Feb 12;57(7):1963-1967. doi: 10.1002/anie.201710150. Epub 2018 Jan 12.

PMID:
29247475
6.

Hierarchical Porous Co9S8/Nitrogen-Doped Carbon@MoS2 Polyhedrons as pH Universal Electrocatalysts for Highly Efficient Hydrogen Evolution Reaction.

Li H, Qian X, Xu C, Huang S, Zhu C, Jiang X, Shao L, Hou L.

ACS Appl Mater Interfaces. 2017 Aug 30;9(34):28394-28405. doi: 10.1021/acsami.7b06384. Epub 2017 Aug 21.

PMID:
28805063
7.

Encapsulating Co2 P@C Core-Shell Nanoparticles in a Porous Carbon Sandwich as Dual-Doped Electrocatalyst for Hydrogen Evolution.

Yang Y, Liang X, Li F, Li S, Li X, Ng SP, Wu CL, Li R.

ChemSusChem. 2018 Jan 23;11(2):376-388. doi: 10.1002/cssc.201701705. Epub 2018 Jan 9.

PMID:
29024394
8.

Activating rhodium phosphide-based catalysts for the pH-universal hydrogen evolution reaction.

Pu Z, Amiinu IS, He D, Wang M, Li G, Mu S.

Nanoscale. 2018 Jul 9;10(26):12407-12412. doi: 10.1039/c8nr02854k.

PMID:
29926048
9.

One-Dimensional Porous Hybrid Structure of Mo2C-CoP Encapsulated in N-Doped Carbon Derived from MOF: An Efficient Electrocatalyst for Hydrogen Evolution Reaction over the Entire pH Range.

Luo X, Zhou Q, Du S, Li J, Zhang L, Lin K, Li H, Chen B, Wu T, Chen D, Chang M, Liu Y.

ACS Appl Mater Interfaces. 2018 Dec 12;10(49):42335-42347. doi: 10.1021/acsami.8b15456. Epub 2018 Dec 3.

PMID:
30461256
10.

Toward Bifunctional Overall Water Splitting Electrocatalyst: General Preparation of Transition Metal Phosphide Nanoparticles Decorated N-Doped Porous Carbon Spheres.

Wu K, Chen Z, Cheong WC, Liu S, Zhu W, Cao X, Sun K, Lin Y, Zheng L, Yan W, Pan Y, Wang D, Peng Q, Chen C, Li Y.

ACS Appl Mater Interfaces. 2018 Dec 26;10(51):44201-44208. doi: 10.1021/acsami.8b14889. Epub 2018 Dec 14.

PMID:
30525396
11.

General Method for Synthesizing Transition-Metal Phosphide/N-Doped Carbon Nanomaterials for Hydrogen Evolution.

Jin L, Zhang X, Zhao W, Chen S, Shi Z, Wang J, Xie Y, Liang F, Zhao C.

Langmuir. 2019 Jul 16;35(28):9161-9168. doi: 10.1021/acs.langmuir.9b01302. Epub 2019 Jul 2.

PMID:
31265304
12.

An Efficient Cobalt Phosphide Electrocatalyst Derived from Cobalt Phosphonate Complex for All-pH Hydrogen Evolution Reaction and Overall Water Splitting in Alkaline Solution.

Wu J, Wang D, Wan S, Liu H, Wang C, Wang X.

Small. 2019 Mar 25:e1900550. doi: 10.1002/smll.201900550. [Epub ahead of print]

PMID:
30908837
13.

Highly efficient charge transfer in Co/Co2P Schottky junctions embedded in nitrogen-doped porous carbon for enhancing bioelectricity generation.

Xu X, You S, Yang L, Xing Z, Pan S, Cai Z, Dai Y, Zou J.

Biosens Bioelectron. 2018 Apr 15;102:101-105. doi: 10.1016/j.bios.2017.11.022. Epub 2017 Nov 6.

PMID:
29127897
14.

Confined Molybdenum Phosphide in P-Doped Porous Carbon as Efficient Electrocatalysts for Hydrogen Evolution.

Li JS, Zhang S, Sha JQ, Wang H, Liu MZ, Kong LX, Liu GD.

ACS Appl Mater Interfaces. 2018 May 23;10(20):17140-17146. doi: 10.1021/acsami.8b01541. Epub 2018 May 9.

PMID:
29717865
15.

Transition-Metal Phosphide-Carbon Nanosheet Composites Derived from Two-Dimensional Metal-Organic Frameworks for Highly Efficient Electrocatalytic Water-Splitting.

Zhai M, Wang F, Du H.

ACS Appl Mater Interfaces. 2017 Nov 22;9(46):40171-40179. doi: 10.1021/acsami.7b10680. Epub 2017 Nov 13.

PMID:
29098858
16.

General Strategy for the Synthesis of Transition Metal Phosphide Films for Electrocatalytic Hydrogen and Oxygen Evolution.

Read CG, Callejas JF, Holder CF, Schaak RE.

ACS Appl Mater Interfaces. 2016 May 25;8(20):12798-803. doi: 10.1021/acsami.6b02352. Epub 2016 May 16.

PMID:
27156388
17.

Molybdenum Carbide-Decorated Metallic Cobalt@Nitrogen-Doped Carbon Polyhedrons for Enhanced Electrocatalytic Hydrogen Evolution.

Wu C, Liu D, Li H, Li J.

Small. 2018 Apr;14(16):e1704227. doi: 10.1002/smll.201704227. Epub 2018 Mar 23.

PMID:
29571215
18.

Metal organic framework-derived CoPS/N-doped carbon for efficient electrocatalytic hydrogen evolution.

Li Y, Niu S, Rakov D, Wang Y, Cabán-Acevedo M, Zheng S, Song B, Xu P.

Nanoscale. 2018 Apr 19;10(15):7291-7297. doi: 10.1039/c8nr01811a.

PMID:
29632920
19.

Synthesis of Nickel Phosphide Electrocatalysts from Hybrid Metal Phosphonates.

Zhang R, Russo PA, Feist M, Amsalem P, Koch N, Pinna N.

ACS Appl Mater Interfaces. 2017 Apr 26;9(16):14013-14022. doi: 10.1021/acsami.7b01178. Epub 2017 Apr 11.

PMID:
28357856
20.

Phytic acid-derivative transition metal phosphides encapsulated in N,P-codoped carbon: an efficient and durable hydrogen evolution electrocatalyst in a wide pH range.

Pu Z, Amiinu IS, Zhang C, Wang M, Kou Z, Mu S.

Nanoscale. 2017 Mar 9;9(10):3555-3560. doi: 10.1039/c6nr09883e.

PMID:
28244521

Supplemental Content

Support Center